	REVISIONS						
LTR	DESCRIPTION	DATE	APPROVED				
A	Update boilerplate paragraphs to current requirements. – RDC	25-03-19	Muhammad A. Akbar				

Vendor item drawing

Prepared in accordance with ASME Y14.24

REV А А А А А А А А А PAGE 128 129 130 131 132 133 134 135 136 REV А PAGE 106 107 108 109 110 111 112 113 114 115 117 118 119 120 121 122 123 124 125 126 127 116 REV А PAGE 84 97 85 86 87 88 89 90 91 92 93 94 95 96 98 99 100 101 102 103 104 105 REV А А А А А А А А А А A А А А А А А А А А А A PAGE 62 75 63 64 65 66 67 68 69 70 71 72 73 74 76 77 78 79 80 81 82 83 REV А PAGE 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 61 60 REV А A PAGE 18 20 21 19 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 REV A A А А А А A А А А А А А А А A А **REV STATUS OF PAGES** PAGE 2 3 4 5 6 7 8 10 11 12 13 15 16 17 9 14 1 PREPARED BY **DLA LAND AND MARITIME** PMIC N/A COLUMBUS, OHIO 43218-3990 Phu H. Nguyen https://www.dla.mil/landandmaritime CHECKED BY Original date of drawing TITLE YY MM DD MICROCIRCUIT, LINEAR-DIGITAL, Phu H. Nguyen PROCESSOR, MONOLITHIC SILICON 19-05-17 APPROVED BY Thomas M. Hess SIZE CODE IDENT. NO. DWG NO. V62/15602 Α 16236 Α PAGE 1 **OF** 136 REV

1. SCOPE

1.1 <u>Scope</u>. This drawing documents the general requirements of a high performance Processor microcircuit, with an operating temperature range of -40°C to +105°C.

1.2 <u>Vendor Item Drawing Administrative Control Number</u>. The manufacturer's PIN is the item of identification. The vendor item drawing establishes an administrative control number for identifying the item on the engineering documentation:

V62/15602 Drawing number	- <u>01</u> Device type (See 1.2.1)	Case outline (See 1.2.2)	Lead finish (See 1.2.3)
1.2.1 Device type(s).			
Device type	Generic	<u>Ci</u>	rcuit function
01	AM3558 –EP		Processor

1.2.2 <u>Case outline(s)</u>. The case outlines are as specified herein.

Outline letter	<u>Number of pins</u>	Package style
Х	324	Plastic Ball Grid Array <u>1</u> /

1.2.3 Lead finishes. The lead finishes are as specified below or other lead finishes as provided by the device manufacturer:

Finish designator	<u>Material</u>
A B C D E F	Hot solder dip Tin-lead plate Gold plate Palladium Gold flash palladium Tin-lead alloy (BGA/CGA) Other
£	Culoi

<u>1</u>/ Devices listed on this drawing are supplied to lead finish "F". The solder ball material contains compositions of Sn = 63%, Pb = 34.5, Ag = 2% and Sb = 0.5%.

DLA LAND AND MARITIME	SIZE	CODE IDENT NO.	DWG NO. V62/15602
COLUMBUS, OHIO	A	16236	
		REV A	PAGE 2

1.3 Absolute maximum ratings. 1/2/

Over junction temperature range (unless otherwise noted)

	-	Min	Max	Unit
VDD_MPU	Supply voltage for the MPU core domain	-0.5	1.5	V
VDD_CORE	Supply voltage for the core domain	-0.5	1.5	V
CAP_VDD_RTC <u>3</u> /	Supply voltage for the RTC core domain	-0.5	1.5	V
VPP <u>4</u> /	Supply voltage for the RTC domain	-0.5	2.2	V
VDDS_RTC	Supply voltage for the RTC domain	-0.5	2.1	V
VDDS_OSC	Supply voltage for the System oscillator	-0.5	2.1	V
VDDS_SRAM_CORE_BG	Supply voltage for the Core SRAM LDOs	-0.5	2.1	V
VDDS_SRAM_MPU_BB	Supply voltage for the MPU SRAM LDOs	-0.5	2.1	V
VDDS_PLL_DDR	Supply voltage for the DPLL DDR	-0.5	2.1	V
VDDS_PLL_CORE_LCD	Supply voltage for the DPLL Core and LCD	-0.5	2.1	V
VDDS_PLL_MPU	Supply voltage for the DPLL MPU	-0.5	2.1	V
VDDS_DDR	Supply voltage for the DDR IO domain	-0.5	2.1	V
VDDS	Supply voltage for all dual-voltage IO domains	-0.5	2.1	V
VDDA1P8V_USB0	Supply voltage for USBPHY	-0.5	2.1	V
VDDA1P8V_USB1	Supply voltage for USBPHY	-0.5	2.1	V
VDDA_ADC	Supply voltage for ADC	-0.5	2.1	V
VDDSHV1	Supply voltage for the dual-voltage IO domain	-0.5	3.8	V
VDDSHV2	Supply voltage for the dual-voltage IO domain	-0.5	3.8	V
VDDSHV3	Supply voltage for the dual-voltage IO domain	-0.5	3.8	V
VDDSHV4	Supply voltage for the dual-voltage IO domain	-0.5	3.8	V
VDDSHV5	Supply voltage for the dual-voltage IO domain	-0.5	3.8	V
VDDSHV6	Supply voltage for the dual-voltage IO domain	-0.5	3.8	V
VDDA3P3V_USB0	Supply voltage for USBPHY	-0.5	4	V
VDDA3P3V_USB1	Supply voltage for USBPHY	-0.5	4	V
USB0_VBUS 5/	Supply voltage for USB VBUS comparator input	-0.5	5.25	V
USB1_VBUS <u>5</u> /	Supply voltage for USB VBUS comparator input	-0.5	5.25	V
DDR_VREF	Supply voltage for the DDR SSTL and HSTL reference voltage	-0.5	1.1	V
Steady state max voltage at all IO pins <u>6</u> /			IO supply vo	ltage +0.3 V
USB0_ID <u>7</u> /	Steady state maximum voltage for the USB ID input	-0.5	2.1	V
USB1_ID <u>7</u> /	Steady state maximum voltage for the USB ID input	-0.5	2.1	V
Transient overshoot and undershoot specification at IO terminal			responding IC up to 30% of	
Latch-up performance <u>8</u> /	Class II (105°C)	45		mA
Junction temperature, TJ		-40	125	°C
Storage temperature, Tstg <u>9</u> /		-55	155	°C

DLA LAND AND MARITIME	SIZE	CODE IDENT NO.	DWG NO. V62/15602
COLUMBUS, OHIO	A	16236	
		REV A	PAGE 3

1.4 ESD ratings.

Electrostatic discharge (ESD) performance (VESD):	
Human Body Model (HBM), per ANSI/ESDA/JEDEC JS001 ±2000 V	10/
Charged Device Model (CDM), per JESD22-C101 ±500 V	11/

1.5 Power-On Hours (POH).

Reliability Data 12/ 13/ 14/ 15/

Operating Condition	EX	TENDED
Operating Condition	Junction Temp (T _J)	Lifetime (POH) <u>16</u> /
Turbo	–40°C to 105°C	80K
OPP120	–40°C to 105°C	100K
OPP100	–40°C to 105°C	100K
OPP50	–40°C to 105°C	100K

- 2/ All voltage values are with respect to their associated VSS or VSSA x.
- 3/ This supply is sourced from an internal LDO when RTC_KALDO_ENn is low. If RTC_KALDO_ENn is high, this supply must be sourced from an external power supply.
- 4/ During functional operation, this pin is a no connect.
- 5/ This terminal is connected to a fail-safe IO and does not have a dependence on any IO supply voltage.
- 6/ This parameter applies to all IO terminals which are not fail-safe and the requirement applies to all values of IO supply voltage. For example, if the voltage applied to a specific IO supply is 0 volts the valid input voltage range for any IO powered by that supply will be -0.5 to +0.3 V. Apply special attention anytime peripheral devices are not powered from the same power sources used to power the respective IO supply. It is important the attached peripheral never sources a voltage outside the valid input voltage range, including power supply ramp-up and ramp-down sequences.
- 7/ This terminal is connected to analog circuits in the respective USB PHY. The circuit sources a known current while measuring the voltage to determine if the terminal is connected to VSSA_USB with a resistance less than 10 Ω or greater than 100 kΩ. The terminal should be connected to ground for USB host operation or open-circuit for USB peripheral operation, and should never be connected to any external voltage source.
- 8/ Based on JEDEC JESD78D [IC Latch-Up Test].
- 9/ For tape and reel the storage temperature range is [-10°C; +50°C] with a maximum relative humidity of 70%. TI recommends returning to ambient room temperature before usage.
- 10/ JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.
- 11/ JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.
- 12/ The power-on hours (POH) information in this table is provided solely for your convenience and does not extend or modify the warranty provided under TI's standard terms and conditions for TI semiconductor products.
- 13/ To avoid significant degradation, the device power-on hours (POH) must be limited as described in this table.
- 14/ Logic functions and parameter values are not assured out of the range specified in the recommended operating conditions.
- 15/ The above notations cannot be deemed a warranty or deemed to extend or modify the warranty under TI's standard terms and conditions for TI semiconductor products
- 16/ POH = Power-on hours when the device is fully functional.

DLA LAND AND MARITIME	SIZE	CODE IDENT NO.	DWG NO. V62/15602
COLUMBUS, OHIO	A	16236	
		REV A	PAGE 4

^{1/} Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

1.6 Operating Performance Points (OPPs).

VDD_CORE OPPs for Case X Package 17/

VDD_CORE OPP		VDD_CORE		DDR3 <u>18</u>	DDR2 18/	mDDR 18/	L3 and L4
Device Rev. "Blank"	Min	NOM	Max	DDR3L	DDR2 <u>10</u> /	11100R <u>10</u> /	LS and L4
OPP100	1.056 V	1.100 V	1.144 V	400 MHz	266 MHz	200 MHz	200 and 100 MHz
OPP50	0.912 V	0.950 V	0.998 V		125 MHz	90 MHz	100 and 50 MHz

Valid Combinations of VDD_CORE and VDD_MPU OPPs for case X Package 17/ 18/

VDD_CORE	VDD_MPU
OPP50	OPP100
OPP100	OPP100
OPP100	OPP120
OPP100	Turbo

VDD_MPU OPPs for Case X Package 17/

	VDD_MPU			
VDD_MPU OPP	Min	NOM	Max	ARM (A8)
Turbo	1.210 V	1.260 V	1.326 V	800 MHz
OPP120	1,152 V	1.200 V	1.248 V	720 MHz
OPP100	1.056 V	1.100 V	1.144 V	600 MHz
OPP100	0.912 V	0.950 V	0.988 V	300 MHz

Valid Combinations of VDD_CORE and VDD_MPU OPPs for case X Package

VDD_CORE	VDD_MPU
OPP50	OPP50
OPP50	OPP100
OPP100	OPP50
OPP100	OPP100
OPP100	OPP120
OPP100	Turbo

DLA LAND AND MARITIME	SIZE	CODE IDENT NO.	DWG NO. V62/15602
COLUMBUS, OHIO	A	16236	
		REV A	PAGE 5

<u>17</u>/ Frequencies in this table indicate maximum performance for a given OPP condition.

^{18/} This parameter represents the maximum memory clock frequency. Since data is transferred on both edges of the clock, double data rate (DDR), the maximum data rate is two times the maximum memory clock frequency defined in this table.

1.7 <u>Recommended operating conditions</u>.

Over junction temperature range (unless otherwise noted)

SUPPLY NAME	DESCRIPTION	Min	NOM	Max	Unit
VDD_CORE <u>19</u> /	Supply voltage range for core domain; OPP100	1.056	1.100	1.144	V
	Supply voltage range for core domain; OPP50	0.912	0.950	0.988	
	Supply voltage range for MPU domain; Turbo	1.210	1.260	1.326	
	Supply voltage range for MPU domain; OPP120	1.152	1.200	1.248	
VDD_MPU <u>19</u> /	Supply voltage range for MPU domain; OPP100	1.056	1.100	1.144	V
	Supply voltage range for MPU domain; OPP50	0.912	0.950	0.988	
CAP_VDD_RTC 20/	Supply voltage range for RTC domain input	0.900	1.100	1.250	V
VDDS_RTC	Supply voltage range for RTC domain	1.710	1.800	1.890	V
	Supply voltage range for DDR IO domain (DDR2)	1.710	1.800	1.890	
VDDS_DDR	Supply voltage range for DDR IO domain (DDR3)	1.425	1.500	1.575	V
	Supply voltage range for DDR IO domain (DDR3L)	1.283	1.350	1.418	1
VDDS <u>21</u> /	Supply voltage range for all dual-voltage IO domains	1.710	1.800	1.890	V
VDDS_SRAM_CORE_BG	Supply voltage range for Core SRAM LDOs, analog	1.710	1.800	1.890	V
VDDS_SRAM_MPU_BB	Supply voltage range for MPU SRAM LDOs, analog	1.710	1.800	1.890	V
VDDS_PLL_DDR 22/	Supply voltage range for DPLL DDR, analog	1.710	1.800	1.890	V
VDDS_PLL_CORE_LCD 22/	Supply voltage range for DPLL CORE and LCD, analog	1.710	1.800	1.890	V
VDDS_PLL_MPU 22/	Supply voltage range for DPLL MPU, analog	1.710	1.800	1.890	V
VDDS_OSC	Supply voltage range for system oscillator IO's, analog	1.710	1.800	1.890	V
VDDA1P8V_USB0 22/	Supply voltage range for USBPHY and PER DPLL analog, 1.8 V	1.710	1.800	1.890	V
VDDA1P8V_USB1	Supply voltage range for USB PHY, analog, 1.8 V	1.710	1.800	1.890	V
VDDA3P3V_USB0	Supply voltage range for USB PHY, analog, 3.3 V	3.135	3.300	3.465	V
VDDA3P3V_USB1	Supply voltage range for USB PHY, analog, 3.3 V	3.135	3.300	3.465	V
VDDA_ADC	Supply voltage range for ADC, analog	1.710	1.800	1.890	V
VDDSHV1		1.710	1.800	1.890	V
VDDSHV2	_	1.710	1.800	1.890	V
VDDSHV3	Supply voltage range for dual-voltage IO domain		1.800	1.890	V
VDDSHV4	(1.8-V operation)	1.710	1.800	1.890	V
VDDSHV5		1.710	1.800	1.890	V
VDDSHV6		1.710	1.800	1.890	V
VDDSHV1	Supply voltage range for dual-voltage IO domain	3.135	3.300	3.465	V
VDDSHV2	(3.3-V operation)	3.135	3.300	3.465	V

DLA LAND AND MARITIME	SIZE	CODE IDENT NO.	DWG NO. V62/15602
COLUMBUS, OHIO	A	16236	
		REV A	PAGE 6

1.7 <u>Recommended operating conditions</u>- Continued.

Over junction temperature range (unless otherwise noted)

SUPPLY NAME	DESCRIPTION	Min	NOM	Max	Unit
VDDSHV3		3.135	3.300	3.465	V
VDDSHV4	Supply voltage range for dual-voltage IO	3.135	3.300	3.465	V
VDDSHV5	domain (3.3 -V operation)	3.135	3.300	3.465	V
VDDSHV6		3.135	3.300	3.465	V
DDR_VREF	Voltage range for DDR SSTL and HSTL	0.49 ×	0.49 ×	0.49 ×	V
	reference input (DDR2, DDR3, DDR3L)	VDDS_DDR	VDDS_DDR	VDDS_DDR	
USB0_VBUS	Voltage range for USB VBUS comparator input	0.000	5.000	5.250	V
USB1_VBUS		0.000	5.000	5.250	V
USB0_ID	Voltage range for the USB ID input		<u>23</u> /		V
USB1_ID			<u>23</u> /		V
Operating temperature range, T _J	Extended temperature	-40		105	°C

1.8 Thermal characteristics.

Thermal metric <u>3</u> /	Case outline X (°C/W) <u>24</u> / <u>25</u> /	AIR FLOW (m/s) <u>26</u> /
Junction to case, Reuc	10.2	N/A
Junction to board, Rejb	12.1	N/A
	24.2	0
Junction to free air, ROJA	20.1	1.0
	19.3	2.0
	18.8	3.0
	0.3	0.0
Junction-to-package top, ϕ_{JT}	0.6	1.0
	0.7	2.0
	0.8	3.0
	12.7	0.0
Junction-to-board, ϕ_{JB}	12.3	1.0
	12.3	2.0
	12.2	3.0

- 19/ The supply voltage defined by OPP100 should be applied to this power domain before the device is released from reset.
- 20/ This supply is sourced from an internal LDO when RTC_KALDO_ENn is low. If RTC_KALDO_ENn is high, this supply must be sourced from an external power supply.
- 21/ VDDS should be supplied irrespective of 1.8- or 3.3-V mode of operation of the dual-voltage IOs.
- 22/ For more details on power supply requirements, see Section 6.1.4 from manufacturer data.
- $\overline{23}$ / This terminal is connected to analog circuits in the respective USB PHY. The circuit sources a known current while measuring the voltage to determine if the terminal is connected to VSSA_USB with a resistance less than 10 Ω or greater than 100 k Ω . The terminal should be connected to ground for USB host operation or open-circuit for USB peripheral operation, and should never be connected to any external voltage source.
- 24/ These values are based on a JEDEC-defined 2S2P system (with the exception of the theta JC [ROJC] value, which is based on a JEDEC-defined 1S0P system) and will change based on environment as well as application. For more information, see these EIA/JEDEC standards:JESD51-2, JESD51-3, JESD51-7, JESD51-9,
- <u>25</u>/ °C/W = degrees Celsius per watt.
- <u>26</u>/ m/s = meters per second.

DLA LAND AND MARITIME	SIZE	CODE IDENT NO.	DWG NO. V62/15602
COLUMBUS, OHIO	A	16236	
		REV A	PAGE 7

1.9 **Power Consumption Summary.**

Maximum Current Ratings at Power Terminals 27/

SUPPLY NAME	DESCRIPTION	Max	Unit	
	Maximum current rating for the core domain; OPP100		400	
VDD_CORE	Maximum current rating for the core domain; OPP50	Maximum current rating for the core domain; OPP50		
	Maximum current rating for the MPU domain; Turbo	at 800 MHz	800	
	Maximum current rating for the MPU domain; OPP120	at 720 MHz	720	
VDD_MPU	Maximum current rating for the MPU domain; OPP100	at 600 MHz	600	
	Maximum current rating for the MPU domain; OPP50	at 400 MHz	300	
CAP_VDD_RTC <u>28</u> /	Maximum current rating for RTC domain input and LDO of	output	2	
VDDS_RTC	Maximum current rating for the RTC domain		5	
VDDS_DDR	Maximum current rating for DDR IO domain		250	
VDDS	Maximum current rating for all dual-voltage IO domains		50	
VDDS_SRAM_CORE_BG	Maximum current rating for core SRAM LDOs	10		
VDDS_SRAM_MPU_BB	Maximum current rating for MPU SRAM LDOs		10	mA
VDDS_PLL_DDR	Maximum current rating for the DPLL DDR	10		
VDDS_PLL_CORE_LCD	Maximum current rating for the DPLL Core and LCD		20	
VDDS_PLL_MPU	Maximum current rating for the DPLL MPU		10	
VDDS_OSC	Maximum current rating for the system oscillator IOs	laximum current rating for the system oscillator IOs		
VDDA1P8V_USB0	Maximum current rating for USBPHY 1.8 V	aximum current rating for USBPHY 1.8 V		
VDDA1P8V_USB1	Maximum current rating for USBPHY 1.8 V		25	
VDDA3P3V_USB0	Maximum current rating for USBPHY 3.3 V		40	
VDDA3P3V_USB1	Maximum current rating for USBPHY 3.3 V		40	
VDDA_ADC	Maximum current rating for ADC		10	
VDDSHV1	Maximum current rating for dual-voltage IO domain		50	
VDDSHV2	Maximum current rating for dual-voltage IO domain		50	
VDDSHV3	Maximum current rating for dual-voltage IO domain		50	7
VDDSHV4	Maximum current rating for dual-voltage IO domain		50	7
VDDSHV5	Maximum current rating for dual-voltage IO domain		50	
VDDSHV6	Maximum current rating for dual-voltage IO domain		100	

DLA LAND AND MARITIME	SIZE	CODE IDENT NO.	DWG NO. V62/15602
COLUMBUS, OHIO	A	16236	
		REV A	PAGE 8

^{27/} Current ratings specified in this table are worst-case estimates. Actual application power supply estimates could be lower. For more information, see the manufacturer AM335x Power Consumption Summary application report (SPRABN5) on manufacturer data.

^{28/} This supply is sourced from an internal LDO when RTC_KALDO_ENn is low. If RTC_KALDO_ENn is high, this supply must be sourced from an external power supply.

1.9 **Power Consumption Summary**- Continued.

Low-Power Modes Power Consumption Summary

POWER MODES	APPLICATION STATE	POWER DOMAINS, CLOCKS, AND VOLTAGE SUPPLY STATES	NOM	Max	Unit
Standby	DDR memory is in self-refresh and contents are preserved. Wake up from any GPIO. Cortex- A8 context/register contents are lost and must be saved before entering standby. On exit, context must be restored from DDR. For wake-up, boot ROM executes and branches to system resume.	 Power supplies: All power supplies are ON. VDD_MPU = 0.95 V (nom) VDD_CORE = 0.95 V (nom) Clocks: Main Oscillator (OSC0) = ON All DPLLs are in bypass. Power domains: PD_PER = ON PD_MPU = OFF PD_GFX = OFF PD_WKUP = ON DDR is in self-refresh. 	16.5	22.0	mW
Deepsleep1	On-chip peripheral registers are preserved. Cortex-A8 context/registers are lost, so the application needs to save them to the L3 OCMC RAM or DDR before entering DeepSleep. DDR is in self- refresh. For wake-up, boot ROM executes and branches to syste	Power supplies: • All power supplies are ON. • VDD_MPU = 0.95 V (nom) • VDD_CORE = 0.95 V (nom) Clocks: • Main Oscillator (OSC0) = OFF • All DPLLs are in bypass. Power domains: • PD_PER = ON • PD_MPU = OFF • PD_GFX = OFF • PD_GFX = OFF • PD_WKUP = ON DDR is in self-refresh.	6.0	10.0	
Deepsleep0	PD_PER peripheral and Cortex- A8/MPU register information will be lost. On- chip peripheral register (context) information of PD-PER domain needs to be saved by application to SDRAM before entering this mode. DDR is in self- refresh. For wake-up, boot ROM executes and branches to peripheral context restore followed by system resume.	Power supplies: • All power supplies are ON. • VDD_MPU = 0.95 V (nom) • VDD_CORE = 0.95 V (nom) Clocks: • Main Oscillator (OSC0) = OFF • All DPLLs are in bypass. Power domains: • PD_PER = OFF • PD_MPU = OFF • PD_GFX = OFF • PD_GFX = OFF • PD_WKUP = ON DDR is in self-refresh.	3.0	4.3	

DLA LAND AND MARITIME	SIZE	CODE IDENT NO.	DWG NO. V62/15602	
COLUMBUS, OHIO	A	16236		
		REV A	PAGE 9	

2. APPLICABLE DOCUMENTS

JEDEC - SOLID STATE TECHNOLOGY ASSOCIATION (JEDEC)

JEP95 JEP155 JEP157		Registered and Standard Outlines for Semiconductor Devices Recommended ESD Target Levels For HBM/MM Qualification Recommended ESD-CDM Target Levels
JESD 51-2	_	· · · · · · · · · · · · · · · · · · ·
JESD 51-3	_	Low Effective Thermal Conductivity Test Board for Leaded Surface Mount Packages.
JESD51-7	_	High Effective Thermal Conductivity Test Board for Leaded Surface Mount Packages
JESD51-9	_	Test Boards for Area Array Surface Mount Package Thermal Measurements.
JESD79-2F	_	DDR2 SDRAM specification.
JESD79-3F	_	DDR2 SDRAM specification.
JESD209B	_	Low Power Double Data Rate (LPDDR).

(Copies of these documents are available online at https://www.jedec.org.)

3. REQUIREMENTS

3.1 <u>Marking</u>. Parts shall be permanently and legibly marked with the manufacturer's part number as shown in 6.3 herein and as follows:

- A. Manufacturer's name, CAGE code, or logo
- B. Pin 1 identifier
- C. ESDS identification (optional)

3.2 <u>Unit container</u>. The unit container shall be marked with the manufacturer's part number and with items A and C (if applicable) above.

3.3 <u>Electrical characteristics</u>. The maximum and recommended operating conditions and electrical performance characteristics are as specified in 1.3, 1.4, and table I herein.

3.4 Design, construction, and physical dimension. The design, construction, and physical dimensions are as specified herein.

- 3.5 Diagrams.
- 3.5.1 <u>Case outline</u>. The case outline shall be as shown in 1.2.2 and figure 1.
- 3.5.2 <u>Functional block diagram</u>. The functional block diagram shall be as shown in figure 2.
- 3.5.3 Pin Map Location (Section Left). Pin Map Location (Section Left) shall be as shown in figure 3.
- 3.5.4 Pin Map Location (Section Middle). Pin Map Location (Section Middle) shall be as shown in figure 4.
- 3.5.5 Pin Map Location (Section Right). Pin Map Location (Section Right) shall be as shown in figure 5.
- 3.5.6 Power Supply and Slew Rate. The Power Supply and Slew Rate shall be as shown in figure 6.
- 3.5.7 <u>Preferred Power Supply Sequencing with Dual Voltage IOs Configured as 3.3 V</u>. The Preferred Power Supply Sequencing with Dual Voltage IOs Configured as 3.3 V shall be as shown in figure 7.
- 3.5.8 <u>Alternate Power Supply Sequencing with Dual Voltage IOs Configured as 3.3 V</u>. The Alternate Power Supply Sequencing with Dual Voltage IOs Configured as 3.3 V shall be as shown in figure 8.

DLA LAND AND MARITIME	SIZE	CODE IDENT NO.	DWG NO. V62/15602
COLUMBUS, OHIO	A	16236	
		REV A	PAGE 10

- 3.5.9 <u>Power Supply Sequencing with Dual Voltage IOs Configured as 1.8 V</u>. The Power Supply Sequencing with Dual Voltage IOs Configured as 1,8 V shall be as shown in figure 9.
- 3.5.10 <u>Power-Supply Sequencing With Internal RTC LDO Disabled</u>. The Power-Supply Sequencing With Internal RTC LDO Disabled shall be as shown in figure 10.
- 3.5.11 <u>Power-Supply Sequencing with RTC Feature Disabled</u>. The Power-Supply Sequencing with RTC Feature Disabled shall be as shown in figure 11.
- 3.5.12 <u>VDD_MPU_MON_Connectivity</u>. The VDD_MPU_MON Connectivity shall be as shown in figure 12.
- 3.5.13 <u>DPLL Power Supply Connectivity</u>. The DPLL Power Supply Connectivity shall be as shown in figure 13.
- 3.5.14 OSC0 Start-Up Time. The OSC0 Start-Up Time shall be as shown in figure 14.
- 3.5.15 <u>OSC1 Start-Up Time</u>. The OSC1 Start-Up Time shall be as shown in figure 15.
- 3.5.16 OSC1 LVCMOS Circuit Schematic. The OSC1 LVCMOS Circuit Schematic shall be as shown in figure 16.
- 3.5.17 <u>DCANx Timings</u>. The DCANx Timings shall be as shown in figure 17.
- 3.5.18 <u>Timer Timing</u>. The Timer Timing shall be as shown in figure 18.
- 3.5.19 <u>MDIO DATA Timing Input Mode</u>. The MDIO_DATA Timing Input Mode shall be as shown in figure 19.
- 3.5.20 MDIO_CLK Timing. The MDIO_CLK Timing shall be as shown in figure 20.
- 3.5.21 MDIO DATA Timing Output Mode. The MDIO_DATA Timing Output Mode shall be as shown in figure 21.
- 3.5.22 <u>GMII[x] RXCLK Timing MII Mode</u>. The GMII[x] RXCLK Timing MII Mode shall be as shown in figure 22.
- 3.5.23 <u>GMII[x] TXCLK Timing MII Mode</u>. The GMII[x]_TXCLK Timing MII Mode shall be as shown in figure 23.
- 3.5.24 <u>GMII[x] RXD[3:0], GMII[x] RXDV, GMII[x] RXER Timing MII Mode</u>. The GMII[x]_RXD[3:0], GMII[x]_RXDV, GMII[x]_RXER Timing MII Mode shall be as shown in figure 24.
- 3.5.25 <u>GMII[x] TXD[3:0], GMII[x] TXEN Timing MII Mode</u>. The GMII[x]_TXD[3:0], GMII[x]_TXEN Timing MII Mode shall be as shown in figure 25.
- 3.5.26 RMII[x] REFCLK Timing RMII Mode. The RMII[x]_REFCLK Timing RMII Mode shall be as shown in figure 26.
- 3.5.27 <u>RMII[x]_RXD[1:0], RMII[x]_CRS_DV, RMII[x]_RXER Timing RMII Mode</u>. The RMII[x]_RXD[1:0], RMII[x]_CRS_DV, RMII[x]_RXER Timing RMII Mode shall be as shown in figure 27.
- 3.5.28 <u>RMII[x] TXD[1:0], RMII[x] TXEN Timing RMII Mode</u>. The RMII[x]_TXD[1:0], RMII[x]_TXEN Timing RMII Mode shall be as shown in figure 28.
- 3.5.29 <u>RGMII[x] RCLK Timing RGMII Mode</u>. The RGMII[x]_RCLK Timing RGMII Mode shall be as shown in figure 29.
- 3.5.30 <u>RGMII[x]</u> RD[3:0], RGMII[x] RCTL Timing RGMII Mode. The RGMII[x]_RD[3:0], RGMII[x]_RCTL Timing RGMII Mode shall be as shown in figure 30.
- 3.5.31 <u>RGMII[x]_TCLK Timing RGMII Mode</u>. The RGMII[x]_TCLK Timing RGMII Mode shall be as shown in figure 31.
- 3.5.32 <u>RGMII[x]</u> TD[3:0], <u>RGMII[x]</u> TCTL Timing <u>RGMII Mode</u>. The RGMII[x]_TD[3:0], <u>RGMII[x]_TCTL</u> Timing <u>RGMII Mode</u> shall be as shown in figure 32.
- 3.5.33 <u>GPMC and NOR Flash—Synchronous Single Read—(GpmcFCLKDivider = 0)</u>. The GPMC and NOR Flash—Synchronous Single Read—(GpmcFCLKDivider = 0) shall be as shown in figure 33.

DLA LAND AND MARITIME	SIZE	CODE IDENT NO.	DWG NO. V62/15602
COLUMBUS, OHIO	A	16236	
		REV A	PAGE 11

- 3.5.34 <u>GPMC and NOR Flash—Synchronous Burst Read—4x16-bit (GpmcFCLKDivider = 0)</u>. The GPMC and NOR Flash— Synchronous Burst Read—4x16-bit (GpmcFCLKDivider = 0) shall be as shown in figure 34.
- 3.5.35 <u>GPMC and NOR Flash—Synchronous Burst Write—(GpmcFCLKDivider > 0)</u>. The GPMC and NOR Flash—Synchronous Burst Write—(GpmcFCLKDivider > 0) shall be as shown in figure 35.
- 3.5.36 <u>GPMC and Multiplexed NOR Flash—Synchronous Burst Read</u>. The GPMC and Multiplexed NOR Flash—Synchronous Burst Read shall be as shown in figure 36.
- 3.5.37 <u>GPMC and Multiplexed NOR Flash—Synchronous Burst Write</u>. The GPMC and Multiplexed NOR Flash—Synchronous Burst Write shall be as shown in figure 37.
- 3.5.38 <u>GPMC and NOR Flash—Asynchronous Read—Single Word</u>. The GPMC and NOR Flash—Asynchronous Read—Single Word shall be as shown in figure 38.
- 3.5.39 <u>GPMC and NOR Flash—Asynchronous Read—32-bit</u>. The <u>GPMC and NOR Flash—Asynchronous Read—32-bit</u> shall be as shown in figure 39.
- 3.5.40 <u>GPMC and NOR Flash—Asynchronous Read—Page Mode 4x16-bit</u>. The GPMC and NOR Flash—Asynchronous Read— Page Mode 4x16-bit shall be as shown in figure 40.
- 3.5.41 <u>GPMC and NOR Flash—Asynchronous Write—Single Word</u>. The GPMC and NOR Flash—Asynchronous Write—Single Word shall be as shown in figure 41.
- 3.5.42 <u>GPMC and Multiplexed NOR Flash—Asynchronous Read—Single Word</u>. The GPMC and Multiplexed NOR Flash— Asynchronous Read—Single Word shall be as shown in figure 42.
- 3.5.43 <u>GPMC and Multiplexed NOR Flash—Asynchronous Write—Single Word</u>. The GPMC and Multiplexed NOR Flash— Asynchronous Write—Single Word shall be as shown in figure 43.
- 3.5.44 <u>GPMC and NAND Flash—Command Latch Cycle</u>. The GPMC and NAND Flash—Command Latch Cycle shall be as shown in figure 44.
- 3.5.45 <u>GPMC and NAND Flash—Address Latch Cycle</u>. The GPMC and NAND Flash—Address Latch Cycle shall be as shown in figure 45.
- 3.5.46 <u>GPMC and NAND Flash—Data Read Cycle</u>. The GPMC and NAND Flash—Data Read Cycle shall be as shown in figure 46.
- 3.5.47 <u>GPMC and NAND Flash— Data Write Cycle</u>. The GPMC and NAND Flash— Data Write Cycle shall be as shown in figure
 47.
- 3.5.48 <u>LPDDR Memory Interface Clock Timing</u>. The LPDDR Memory Interface Clock Timing shall be as shown in figure 48.
- 3.5.49 <u>AM3358-EP Device and LPDDR Device Placement</u>. The AM3358-EP Device and LPDDR Device Placement shall be as shown in figure 49.
- 3.5.50 <u>CK and ADDR_CTRL Routing and Topology</u>. The CK and ADDR_CTRL Routing and Topology shall be as shown in figure 50.
- 3.5.51 <u>DQS[x] and DQ[x] Routing and Topology</u>. The DQS[x] and DQ[x] Routing and Topology shall be as shown in figure 51.
- 3.5.52 DDR2 Memory Interface Clock Timing. The DDR2 Memory Interface Clock Timing shall be as shown in figure 52.

DLA LAND AND MARITIME	SIZE	CODE IDENT NO.	DWG NO. V62/15602
COLUMBUS, OHIO	A	16236	
		REV A	PAGE 12

- 3.5.53 <u>AM3358-EP Device and DDR2 Device Placement</u>. The AM3358-EP Device and DDR2 Device Placement shall be as shown in figure 53.
- 3.5.54 <u>CK and ADDR_CTRL Routing and Topology</u>. The CK and ADDR_CTRL Routing and Topology shall be as shown in figure 54.
- 3.5.55 <u>DQS[x] and DQ[x] Routing and Topology</u>. The DQS[x] and DQ[x] Routing and Topology shall be as shown in figure 55.
- 3.5.56 <u>DDR3 Memory Interface Clock Timing</u>. The DDR3 Memory Interface Clock Timing shall be as shown in figure 56.
- 3.5.57 <u>Placement Specifications</u>. The Placement Specifications shall be as shown in figure 57.
- 3.5.58 <u>CLM for Two Address Loads on One Side of PCB</u>. The CLM for Two Address Loads on One Side of PCB shall be as shown in figure 58.
- 3.5.59 DQLM for Any Number of Allowed DDR3 Devices. The DQLM for Any Number of Allowed DDR3 Devices shall be as shown in figure 59.
- 3.5.60 <u>I²C Receive Timing</u>. The I²C Receive Timing shall be as shown in figure 60.
- 3.5.61 <u>I²C Transmit Timing</u>. The I²C Transmit Timing shall be as shown in figure 61.
- 3.5.62 JTAG Timing. The JTAG Timing shall be as shown in figure 62.
- 3.5.63 <u>Command Write in Hitachi Mode</u>. The Command Write in Hitachi Mode shall be as shown in figure 63.
- 3.5.64 <u>Data Write in Hitachi Mode</u>. The Data Write in Hitachi Mode shall be as shown in figure 64.
- 3.5.65 <u>Command Read in Hitachi Mode</u>. The Command Read in Hitachi Mode shall be as shown in figure 65.
- 3.5.66 <u>Data Read in Hitachi Mode</u>. The Data Read in Hitachi Mode shall be as shown in figure 66.
- 3.5.67 <u>Micro-Interface Graphic Display Motorola Write</u>. The Micro-Interface Graphic Display Motorola Write shall be as shown in figure 67.
- 3.5.68 <u>Micro-Interface Graphic Display Motorola Read</u>. The Micro-Interface Graphic Display Motorola Read shall be as shown in figure 68.
- 3.5.69 <u>Micro-Interface Graphic Display Motorola Status</u>. The Micro-Interface Graphic Display Motorola Status shall be as shown in figure 69.
- 3.5.70 <u>Micro-Interface Graphic Display Intel Write</u>. The Micro-Interface Graphic Display Intel Write shall be as shown in figure 70.
- 3.5.71 Micro-Interface Graphic Display Intel Read. The Micro-Interface Graphic Display Intel Read shall be as shown in figure 71.
- 3.5.72 Micro-Interface Graphic Display Intel Status. The Micro-Interface Graphic Display Intel Status shall be as shown in figure 72.
- 3.5.73 <u>LCD Raster-Mode Active</u>. The LCD Raster-Mode Active shall be as shown in figure 73.
- 3.5.74 LCD Raster-Mode Passive. The LCD Raster-Mode Passive shall be as shown in figure 74.
- 3.5.75 <u>LCD Raster-Mode Control Signal Activation</u>. The LCD Raster-Mode Control Signal Activation shall be as shown in figure 75.
- 3.5.76 <u>LCD Raster-Mode Control Signal Deactivation</u>. The LCD Raster-Mode Control Signal Deactivation shall be as shown in figure 76.

DLA LAND AND MARITIME	SIZE	CODE IDENT NO.	DWG NO. V62/15602
COLUMBUS, OHIO	A	16236	
		REV A	PAGE 13

- 3.5.77 McASP Input Timing. The McASP Input Timing shall be as shown in figure 77.
- 3.5.78 McASP Input Timing. The McASP Input Timing shall be as shown in figure 78.
- 3.5.79 McASP Output Timing. The McASP Output Timing shall be as shown in figure 79.
- 3.5.80 <u>SPI Slave Mode Receive Timing</u>. The SPI Slave Mode Receive Timing shall be as shown in figure 80.
- 3.5.81 <u>SPI Slave Mode Transmit Timing</u>. The SPI Slave Mode Transmit Timing shall be as shown in figure 81.
- 3.5.82 <u>SPI Master Mode Receive Timing</u>. The SPI Master Mode Receive Timing shall be as shown in figure 82.
- 3.5.83 <u>SPI Master Mode Transmit Timing</u>. The SPI Master Mode Transmit Timing shall be as shown in figure 83.
- 3.5.84 <u>MMC[x] CMD and MMC[x] DAT[7:0] Input Timing</u>. The MMC[x]_CMD and MMC[x]_DAT[7:0] Input Timing shall be as shown in figure 84.
- 3.5.85 <u>MMC[x]_CMD and MMC[x]_DAT[7:0] Output Timing—Standard Mode</u>. The MMC[x]_CMD and MMC[x]_DAT[7:0] Output Timing—Standard Mode shall be as shown in figure 85.
- 3.5.86 <u>MMC[x] CMD and MMC[x] DAT[7:0] Output Timing—High Speed Mode</u>. The MMC[x]_CMD and MMC[x]_DAT[7:0] Output Timing—High Speed Mode shall be as shown in figure 86.
- 3.5.87 <u>PRU-ICSS PRU Direct Input Timing</u>. The PRU-ICSS PRU Direct Input Timing shall be as shown in figure 87.
- 3.5.88 <u>PRU-ICSS PRU Direct Output Timing</u>. The PRU-ICSS PRU Direct Output Timing shall be as shown in figure 88.
- 3.5.89 <u>PRU-ICSS PRU Parallel Capture Timing Rising Edge Mode</u>. The PRU-ICSS PRU Parallel Capture Timing Rising Edge Mode shall be as shown in figure 89.
- 3.5.90 <u>PRU-ICSS PRU Parallel Capture Timing Falling Edge Mode</u>. The PRU-ICSS PRU Parallel Capture Timing Falling Edge Mode shall be as shown in figure 90.
- 3.5.91 PRU-ICSS PRU Shift In Timing. The PRU-ICSS PRU Shift In Timing shall be as shown in figure 91.
- 3.5.92 PRU-ICSS PRU Shift Out Timing. The PRU-ICSS PRU Shift Out Timing shall be as shown in figure 92.
- 3.5.93 <u>PRU-ICSS MDIO_DATA Timing Input Mode</u>. The PRU-ICSS MDIO_DATA Timing Input Mode shall be as shown in figure 93.
- 3.5.94 <u>PRU-ICSS MDIO_CLK Timing</u>. The PRU-ICSS MDIO_CLK Timing shall be as shown in figure 94.
- 3.5.95 <u>PRU-ICSS MDIO_DATA Timing Output Mode</u>. The PRU-ICSS MDIO_DATA Timing Output Mode shall be as shown in figure 95.
- 3.5.96 <u>PRU-ICSS MII_RXCLK Timing</u>. The PRU-ICSS MII_RXCLK Timing shall be as shown in figure 96.
- 3.5.97 <u>PRU-ICSS MII_TXCLK Timing</u>. The PRU-ICSS MII_TXCLK Timing shall be as shown in figure 97.
- 3.5.98 <u>PRU-ICSS MII_RXD[3:0], MII_RXDV, and MII_RXER Timing</u>. The PRU-ICSS MII_RXD[3:0], MII_RXDV, and MII_RXER Timing shall be as shown in figure 98.
- 3.5.99 <u>PRU-ICSS MII_TXD[3:0], MII_TXEN Timing</u>. The PRU-ICSS MII_TXD[3:0], MII_TXEN Timing shall be as shown in figure 99.
- 3.5.100 <u>PRU-ICSS UART Timing</u>. The PRU-ICSS UART Timing shall be as shown in figure 100.
- 3.5.101 <u>UART Timing</u>. The UART Timing shall be as shown in figure 101.
- 3.5.102 <u>UART IrDA Pulse Parameters</u>. The UART IrDA Pulse Parameters shall be as shown in figure 102.

DLA LAND AND MARITIME	SIZE	CODE IDENT NO.	DWG NO. V62/15602
COLUMBUS, OHIO	A	16236	
		REV A	PAGE 14

TABLE I. Electrical performance characteristics. 1/ 2/ 3/

Test		Symbol	Limits			Unit
			Min	Тур	Max	
DC Electrical Characteristics <u>3/</u>						
DDR_RESETn,DDR_CSn0,DDR_CKE,DDR_CK,DD DDR_A0,DDR_A1,DDR_A2,DDR_A3,DDR_A4,DDR DDR_A13,DDR_A14,DDR_A15,DDR_ODT,DDR_D0 DDR_D9,DDR_D10, DDR_D11,DDR_D12,DDR_D1 DDR_DQSn0,DDR_DQS1,DDR_DQSn1 Pins	2_A5,DDR_A6,D),DDR_D1,DDR_	DR_A7,DDR_A8 _D2,DDR_D3,D	8,DDR_A9,DDR_A10, DR_D4,DDR_D5,DDF	DDR_A11 R_D6,DDR	,DDR_A12, R_D7,DDR_D8,	
High-level input voltage		Vih	0.65 × VDDS_DDR			V
Low-level input voltage		VIL			0.35 × VDDS_DDR	V
Hysteresis voltage at an input	V _{HYS}	0.07		0.25	V	
High level output voltage, driver enabled, pullup or pulldown disabled		Vон	VDDS_DDR – 0.4			V
Low level output voltage, driver enabled, pullup orpulldown disabled	I _{OL} = 8 mA	Vol			0.4	V
Input leakage current, Receiver disabled, pullup or p inhibited	h			10	μA	
Input leakage current, Receiver disabled, pullup ena		-240		-80		
Input leakage current, Receiver disabled, pulldown e	nabled		80		240	
Total leakage current through the terminal connectio receiver combination that may include a pullup or pu driver output is disabled and the pullup or pulldown	lldown. The	loz			10	μA
DDR_A13,DDR_A14,DDR_A15, DDR_ODT,DDR_D DDR_D9,DDR_D10,DDR_D11,DDR_D12,DDR_D13 DDR_DQS1,DDR_DQSn1 Pins (DDR2 - SSTL Mod	B,DDR_D14, DDI		QM0,DDR_DQM1,DDF			
High-level input voltage		VIH	DDR_VREF + 0.125			V
Low-level input voltage		VIL			DDR_VREF - 0.125	V
Hysteresis voltage at an input	T	V _{HYS}		N/A		V
High level output voltage, driver enabled, pullup or pulldown disabled	I _{ОН} = 8 mA	Vон	vdds_ddr - 0.4			V
Low level output voltage, driver enabled, pullup orpulldown disabled	l _{o∟} = 8 mA	Vol			0.4	V
Input leakage current, Receiver disabled, pullup or p inhibited	ulldown	lı			10	μA
Input leakage current, Receiver disabled, pullup ena	bled		-240		-80	
Input leakage current, Receiver disabled, pulldown e		80		240		
Total leakage current through the terminal connectio receiver combination that may include a pullup or pu driver output is disabled and the pullup or pulldown	lldown. The	loz			10	μA
See footnote at end of table.						_

DLA LAND AND MARITIME	SIZE	CODE IDENT NO.	DWG NO. V62/15602
COLUMBUS, OHIO	A	16236	
		REV A	PAGE 15

TABLE I. Electrical performance characteristics - Continued. 1/ 2/ 3/

Test	Symbol		Limits		
		Min	Тур	Max	

DC Electrical Characteristics (Continued) <u>3/</u>

DDR_RESETn,DDR_CSn0,DDR_CKE,DDR_CK,DDR_CKn,DDR_CASn,DDR_RASn,DDR_WEn,DDR_BA0,DDR_BA1,DDR_BA2, DDR_A0,DDR_A1,DDR_A2,DDR_A3,DDR_A4,DDR_A5,DDR_A6,DDR_A7,DDR_A8,DDR_A9,DDR_A10,DDR_A11,DDR_A12, DDR_A13,DDR_A14,DDR_A15,DDR_ODT,DDR_D0,DDR_D1,DDR_D2,DDR_D3,DDR_D4,DDR_D5,DDR_D6,DDR_D7, DDR_D8,DDR_D9,DDR_D10,DDR_D11,DDR_D12,DDR_D13,DDR_D14,DDR_D15,DDR_DQM0,DDR_DQM1,DDR_DQS0, DDR_DQSn0,DDR_DQS1,DDR_DQSn1 Pins (DDR3, DDR3L - HSTL Mode)

	VDDS	S_DDR = 1.5 V	Vih	DDR_VREF + 0.1			V
High-level input voltage	VDDS	6_DDR = 1.35 V		DDR_VREF + 0.09			
	VDDS_DDR = 1.5 V		VIL			DDR_VREF – 0.1	V
Low-level input voltage		6_DDR = 1.35 V				DDR_VREF - 0.09	
Hysteresis voltage at an input			V _{HYS}		N/A		V
High level output voltage, driver enabled, pullu pulldown disabled	High level output voltage, driver enabled, pullup or I _{OH} = 8 mA pulldown disabled		Vон	VDDS_DDR – 0.4			V
Low level output voltage, driver enabled, pullu orpulldown disabled	р	I _{OL} = 8 mA	Vol			0.4	V
Input leakage current, Receiver disabled, pullu	ıp or pul	ldown inhibited				10	
Input leakage current, Receiver disabled, pullup enabled			h	-240		-80	μA
Input leakage current, Receiver disabled, pulldown enabled				80		240	
Total leakage current, Receiver disabled, pulldown enabled Total leakage current through the terminal connection of a driver- receiver combination that may include a pullup or pulldown. The driver output is disabled and the pullup or pulldown is inhibited.		loz			10	μA	

ECAP0_IN_PWM0_OUT,UART0_CTSn,UART0_RTSn,UART0_RXD,UART0_TXD,UART1_CTSn,UART1_RTSn,UART1_RXD, UART1_TXD,I2C0_SDA,I2C0_SCL,XDMA_EVENT_INTR0,XDMA_EVENT_INTR1,WARMRSTn,EXTINTn,TMS,TDO, USB0_DRVVBUS,USB1_DRVVBUS (VDDSHV6 = 1.8 V)

High-level input voltage		Vih	0.65 × VDDSHV6			V
Low-level input voltage		VIL			0.35 × VDDSHV6	V
Hysteresis voltage at an input		V _{HYS}	0.18		0.305	V
High level output voltage, driver enabled, pullup or pulldown disabled	I _{OH} = 4 mA	V _{OH}	VDDSHV6 – 0.45			V
Low level output voltage, driver enabled, pullup orpulldown disabled	I _{OL} = 4 mA	Vol			0.45	V
Input leakage current, Receiver disabled, pullup or pu	lldown inhibited				8	
Input leakage current, Receiver disabled, pullup enable	led	h	-161	-100	-52	μA
Input leakage current, Receiver disabled, pulldown enabled			52	100	170	
Total leakage current through the terminal connection of a driver- receiver combination that may include a pullup or pulldown. The driver output is disabled and the pullup or pulldown is inhibited.		loz			8	μA

DLA LAND AND MARITIME	SIZE	CODE IDENT NO.	DWG NO. V62/15602
COLUMBUS, OHIO	A	16236	
		REV A	PAGE 16

TABLE I.	Electrical	performance characteristics - Continued.	1/	2/ 3/

Test		Symbol		Limits		Unit
			Min	Тур	Max	
DC Electrical Characteristics (Continued) 3	<u>}/</u>					
ECAP0_IN_PWM0_OUT,UART0_CTSn,UART0_RT UART1_TXD,I2C0_SDA,I2C0_SCL,XDMA_EVENT_ USB0_DRVVBUS,USB1_DRVVBUS (VDDSHV6 = 3	INTRO, XDMA EVE				T1_RXD,	
High-level input voltage		Vін	2			V
Low-level input voltage		VIL			0.8	V
Hysteresis voltage at an input		V _{HYS}	0.265		0.44	V
High level output voltage, driver enabled, pullup or pulldown disabled	I _{ОН} = 8 mA	Vон	VDDSHV6 – 0.45			V
Low level output voltage, driver enabled, pullup orpulldown disabled	I _{OL} = 8 mA	Vol			0.45	V
Input leakage current, Receiver disabled, pullup or p	ulldown inhibited				18	
Input leakage current, Receiver disabled, pullup ena	bled	h	-243	-100	-19	μA
Input leakage current, Receiver disabled, pulldown e	enabled		51	110	210	
Total leakage current through the terminal connection of a driver- receiver combination that may include a pullup or pulldown. The driver output is disabled and the pullup or pulldown is inhibited.		loz			18	μA
TCK (VDDSHV6 = 1.8 V)						
High-level input voltage		VIH	1.45			V
Low-level input voltage		VIL			0.46	V
Hysteresis voltage at an input		V _{HYS}	0.4			V
Input leakage current, Receiver disabled, pullup or p	ulldown inhibited				8	
Input leakage current, Receiver disabled, pullup ena	bled	h	-161	-100	-52	μA
Input leakage current, Receiver disabled, pulldown e	enabled		52	100	170	
TCK (VDDSHV6 = 3.3 V)						
High-level input voltage		VIH	2.15			V
Low-level input voltage		VIL			0.46	V
Hysteresis voltage at an input		V _{HYS}	0.4			V
Input leakage current, Receiver disabled, pullup or p	ulldown inhibited				18	
Input leakage current, Receiver disabled, pullup ena	bled	h	-243	-100	-19	μA
Input leakage current, Receiver disabled, pulldown e	enabled		51	110	210	
PWRONRSTn (VDDSHV6 = 1.8 or 3.3 V) $4/$			1			
High-level input voltage		VIH	1.35			V
Low-level input voltage		VIL			0.5	V
Hysteresis voltage at an input		V _{HYS}	0.07			V
Input leakage current	VI = 1.8 V	h			0.1	μA
	VI = 3.3 V				2	

DLA LAND AND MARITIME	SIZE	CODE IDENT NO.	DWG NO. V62/15602
COLUMBUS, OHIO	A	16236	
		REV A	PAGE 17

Test		Symbol	Limits			Unit
			Min	Тур	Max	
DC Electrical Characteristics (Continued) <u>3/</u>						
RTC_PWRONRSTn						
High-level input voltage		Vih	0.65 × VDDS_RTC			V
Low-level input voltage		Vil			0.35 × VDDS_RTC	V
Hysteresis voltage at an input		V _{HYS}	0.065			V
Input leakage current		lı –	-1		1	μA
PMIC_POWER_EN						
High level output voltage, driver enabled, pullup or pulldown disabled	I _{ОН} = 6 mA	Vон	VDDS_RTC - 0.45			V
Low level output voltage, driver enabled, pullup orpulldown disabled	l _{o∟} = 6 mA	Vol			0.45	V
Input leakage current, Receiver disabled, pullup or pullo	lown inhibited		-1		1	
Input leakage current, Receiver disabled, pullup enable	d	h	-200		-40	μA
Input leakage current, Receiver disabled, pulldown enal	bled	-	40		200	
Total leakage current through the terminal connection of a driver- receiver combination that may include a pullup or pulldown. The driver output is disabled and the pullup or pulldown is inhibited.		loz	-1		1	μA
EXT_WAKEUP						
High-level input voltage		Vih	0.65 × VDDS_RTC			V
Low-level input voltage		VIL			0.35 × VDDS_RTC	V
Hysteresis voltage at an input		V _{HYS}	0.15			V
Input leakage current, Receiver disabled, pullup or pullo	lown inhibited		-1		1	
Input leakage current, Receiver disabled, pullup enable	d	h	-200		-40	μA
Input leakage current, Receiver disabled, pulldown enal	bled		40		200	
XTALIN (OSC0)						
High-level input voltage		Vін	0.65 × VDDS_OSC			V
Low-level input voltage		VIL			0.35 × VDDS_OSC	V
RTC_XTALIN (OSC1)		1				1
High-level input voltage		Vih	0.65 × VDDS_RTC			V
Low-level input voltage		VIL			0.35 × VDDS_RTC	V

TABLE I. Electrical performance characteristics- Continued. 1/ 2/ 3/

DLA LAND AND MARITIME	SIZE	CODE IDENT NO.	DWG NO. V62/15602
COLUMBUS, OHIO	A	16236	
		REV A	PAGE 18

Test		Symbol		Limits		Unit
			Min	Тур	Max	1
DC Electr	rical Characteris	tics (Cont	inued) <u>3/</u>			
All other LVCMOS pins (VDDSHVx = 1.8 V; x = 1	to 6)	-	-			
High-level input voltage		Vih	0.65 × VDDSHVx			V
Low-level input voltage		VIL			0.35 × VDDSHVx	V
Hysteresis voltage at an input		V _{HYS}	0.18		0.305	V
High level output voltage, driver enabled, pullup or pulldown disabled	I _{OH} = 6 mA	Vон	VDDSHVx – 0.45			V
Low level output voltage, driver enabled, pullup orpulldown disabled	I _{OL} = 6 mA	Vol			0.45	V
Input leakage current, Receiver disabled, pullup or	pulldown inhibited				8	μA
Input leakage current, Receiver disabled, pullup ena	abled	h	-161	-100	-52	
Input leakage current, Receiver disabled, pulldown	enabled		52	100	170	
Total leakage current through the terminal connection receiver combination that may include a pullup or pullowing driver output is disabled and the pullup or pullowing	ulldown. The	loz			8	μA
All other LVCMOS pins (VDDSHVx = 3.3 V; x = 1						
High-level input voltage		VIH	2			V
Low-level input voltage		VIL			0.8	V
Hysteresis voltage at an input		V _{HYS}	0.265		0.44	V
High level output voltage, driver enabled, pullup or pulldown disabled	I _{ОН} = 6 mA	Vон	VDDSHVx – 0.45			V
Low level output voltage, driver enabled, pullup orpulldown disabled	I _{OL} = 6 mA	Vol			0.45	V
Input leakage current, Receiver disabled, pullup or	pulldown inhibited				18	
Input leakage current, Receiver disabled, pullup enabled		h	-243	-100	-19	μA
Input leakage current, Receiver disabled, pulldown enabled			51	110	210	
Total leakage current through the terminal connection of a driver- receiver combination that may include a pullup or pulldown. The driver output is disabled and the pullup or pulldown is inhibited.		loz			18	

TABLE I. Electrical performance characteristics- Continued. 1/ 2/ 3/

DLA LAND AND MARITIME	SIZE	CODE IDENT NO.	DWG NO. V62/15602
COLUMBUS, OHIO	A	16236	
		REV A	PAGE 19

Test	Symbol	Symbol Test conditions		Limits			
				Тур	Max		
	5.9 Exter	rnal Capacitors					
Core Voltage Decoupling Chara		•					
Cvdd_cor <u>5</u> /				10.08		μF	
Сvdd_мри <u>6</u> /				10.05			
Power-Supply Decoupling Capa	acitor Characteristics						
Cvdda_adc				10		nF	
CVDDA1P8V_USB0				10			
CCVDDA3P3V_USB0				10			
CVDDA3P3V_USB1				10			
Cvdds <u>7</u> /				10.04		μF	
Cvdds_ddr				<u>8</u> /			
Cvdds_osc				10		nF	
CVDDS_PLL_DDR				10			
CVDDS_PLL_CORE_LCD				10			
Cvdds_sram_core_bg <u>9</u> /				10.01		μF	
CVDDS_SRAM_MPU_BB <u>10</u> /				10.01			
CVDDS_PLL_MPU				10			
CVDDS_RTC				10			
Cvddshv1 <u>11</u> /				10.02			
Cvddshv2 <u>11</u> /				10.02			
Сvddshv3 <u>11</u> /				10.02			
Cvddshv4 <u>11</u> /				10.02			
CVDDSHV5 <u>11</u> /				10.02			
CVDDSHV6 <u>12</u> /				10.06			
Output Capacitor Characteristic	cs						
CCAP_VDD_SRAM_CORE 13/				1		μF	
Ccap_vdd_rtc <u>13</u> / <u>14</u> /				1			
CCAP_VDD_SRAM_MPU <u>13</u> /				1			
Ссар_vbb_mpu <u>13</u> /				1			

TABLE I. Electrical performance characteristics - Continued. $\underline{1}/\underline{2}/\underline{3}/$

DLA LAND AND MARITIME	SIZE	CODE IDENT NO.	DWG NO. V62/15602
COLUMBUS, OHIO	A	16236	
		REV A	PAGE 20

Test	Test conditions	Limits				
		Min	Тур	Max		
	Controller and Analog	to-Digital Subsyster	n Electrical I	Parameters		
TSC_ADC Electrical Parame	eters					
Analog Input VREFP 15/		(0.5 × VDDA_ADC) +		VDDA ADC	V	
VICEI 15/		0.25		VDDA_ADC	v	
VREFN <u>15</u> /		0		(0.5 × VDDA_ADC) - 0.25	V	
VREFP + VREFN 15/			VDDA_ADC		V	
Full-scale input range	Internal voltage reference	0		VDDA ADC	V	
	External voltage reference	VREFN		VREFP	V	
Differential non-linearity (DNL)	Internal voltage reference: VDDA_ADC = 1.8 V External voltage reference: VREFP – VREFN = 1.8 V	-1	0.5	1	LS	
Integral non-linearity (INL)	Source impedance = 50Ω Internal voltage reference: VDDA_ADC = $1.8 V$ External voltage reference: VREFP – VREFN = $1.8 V$	-2	±1	2	LS	
	Source impedance = $1 \text{ k}\Omega$ Internal voltage reference: VDDA_ADC = 1.8 V External voltage reference: VREFP – VREFN = 1.8 V		±1		LS	
Gain error	Internal voltage reference: VDDA_ADC = 1.8 V External voltage reference: VREFP – VREFN = 1.8 V		±2		LS	
Offset error	Internal voltage reference: VDDA_ADC = 1.8 V External voltage reference: VREFP – VREFN = 1.8 V		±2		LS	
Input sampling capacitance			5.5		pF	
Signal-to-noise ratio (SNR)	Internal voltage reference: VDDA_ADC = 1.8 V External voltage reference: VREFP – VREFN = 1.8 V Input signal: 30-kHz sine wave at –0.5-dB full scale		70		dE	
Total harmonic distortion THD)	Internal voltage reference: VDDA_ADC = 1.8 V External voltage reference: VREFP – VREFN = 1.8 V Input signal: 30-kHz sine wave at –0.5-dB full scale		75		dE	

TABLE I. <u>Electrical performance characteristics</u> - Continued. <u>1</u>/ <u>2</u>/ <u>3</u>/

DLA LAND AND MARITIME	SIZE	CODE IDENT NO.	DWG NO. V62/15602
COLUMBUS, OHIO	A	16236	
		REV A	PAGE 21

Test	Test conditions		Limits		
		Min	Тур	Max	
Touch Screen Cont	roller and Analog-to-Digital	Subsyste	em Electrical Parameters	s - Cont	inued
TSC_ADC Electrical Parame		-			
Spurious free dynamic range	Internal voltage reference: VDDA_ADC = 1.8 V External voltage reference: VREFP – VREFN = 1.8 V		80		dB
	Input signal: 30-kHz sine wave at –0.5-dB full scale				
Signal-to-noise plus distortion	Internal voltage reference: VDDA_ADC = 1.8 V External voltage reference: VREFP – VREFN = 1.8 V		69		dB
	Input signal: 30-kHz sine wave at –0.5-dB full scale				
VREFP and VREFN input impeda	ance		20		kΩ
Input impedance of AIN[7:0] <u>15</u> /			[1 / ((65.97 × 10–12) × f)]		Ω
Sampling Dynamics					
Conversion time		15			ADC
Acquisition time		2			Clock cycles
Sampling rate	ADC clock = 3 MHz		200		kSPS
Channel-to-channel isolation			100		dB
Touch Screen Switch Drivers					
Pull-up and pull-down switch ON	resistance (Ron)		2		Ω
Pull-up and pull-down switch current leakage lleak	Source impedance = 500 Ω			0.5	uA
Drive current				25	mA
Touch screen resistance				6	kΩ
Pen touch detect				2	kΩ

TABLE I. <u>Electrical performance characteristics</u> - Continued. <u>1</u>/ <u>2</u>/ <u>3</u>/

DLA LAND AND MARITIME	SIZE	CODE IDENT NO.	DWG NO. V62/15602
COLUMBUS, OHIO	A	16236	
		REV A	PAGE 22

SUPPLY NAME DESCRIPTION			Unit		
SUPPLY NAME	DESCRIPTION	Min	Тур	Max	
	Power and Clocking (See Figure 6 to Figure	•			
DPLL Power Supply R	Digital Phase-Locked Loop Power Supply Requir equirements (See Figure 13)	ements			
VDDA1P8V_USB0	Supply voltage range for USBPHY and PER DPLL, Analog, 1.8 V		1.8	1.89	V
	Max peak-to-peak supply noise			50	mV (p-p)
VDDS PLL MPU	Supply voltage range for DPLL MPU, analog	1.71	1.8	1.89	V
VDD5_PLL_IMPU	Max peak-to-peak supply noise			50	mV (p-p)
	Supply voltage range for DPLL CORE and LCD, analog		1.8	1.89	V
VDDS_PLL_CORE_LCD	Max peak-to-peak supply noise			50	mV (p-p)
	Supply voltage range for DPLL DDR, analog	1.71	1.8	1.89	V
VDDS_PLL_DDR	Max peak-to-peak supply noise			50	mV (p-p)

TABLE I. Electrical performance characteristics - Continued. 1/ 2/

DLA LAND AND MARITIME	SIZE	CODE IDENT NO.	DWG NO. V62/15602
COLUMBUS, OHIO	A	16236	
		REV A	PAGE 23

TABLE I. Electrical performance characteristics - Continued. 1/	2	2/
---	---	----

Test	Symbol	Test conditions		Limits		Unit
			Min	Тур	Max	

Power and Clocking – Continued. Clock Specifications

OSC0 Crystal Circuit Requirements

Crystal parallel resonance frequency	fxtal	Fundamental mode oscillation only		19.2, 24, 25 or 26		MHz
Crystal frequency stability and tolerance <u>17</u> /			-50		50	ppm
C1 capacitance	C _{C1}	C _{shunt} ≤ 5 pF	12		24	_
- 1		C _{shunt} > 5 pF	18		24	pF
C2 capacitance	C _{C2}	C _{shunt} ≤ 5 pF	12		24	
·		C _{shunt} > 5 pF	18		24	
Shunt capacitance	Cshunt				7	pF
		fxtal = 19.2 MHz, oscillator has nominal negative resistance of 272 Ω and worstcase negative resistance of 163 Ω			54.5	Ω
Crystal effective series resistance	ESR	fxtal = 24 MHz, oscillator has nominal negative resistance of 240 Ω and worstcase negative resistance of 144 Ω			48.0	
		fxtal = 25 MHz, oscillator has nominal negative resistance of 233 Ω and worstcase negative resistance of 140 Ω			46.6	
		fxtal = 26 MHz, oscillator has nominal negative resistance of 227 Ω and worstcase negative resistance of 137 Ω			45.3	
OSC0 Crystal Circuit Characteristics	(See Figur					<u></u>
Shunt capacitance of package	C _{pkg}			0.01		pF
The actual values of the ESR, <i>f</i> xtal, and CL should be used to yield a typical crystal power dissipation value. Using the maximum values specified for ESR, <i>f</i> xtal, and CL parameters yields a maximum powerdissipation value.				<u>18</u>		
Start-up time	t _{sX}			1.5		ms
OSC0 LVCMOS Reference Clock Requ	irements					
Frequency, LVCMOS reference clock	$f_{({\sf XTALIN})}$			19.2, 24, 25 or 26		MHz
Frequency, LVCMOS reference clock stability and tolerance <u>17</u> /]		-50		50	ppm
Duty cycle, LVCMOS reference clock period	$t_{dc(XTALIN)}$		45%		55%	
Jitter peak-to-peak, LVCMOS reference clock period	tjpp(XTALIN)		-1%		1%	
Time, LVCMOS reference clock rise	tr(xtalin)				5	ns
Time, LVCMOS reference clock fall	t _{F(XTALIN)}				5	ns

DLA LAND AND MARITIME	SIZE	CODE IDENT NO.	DWG NO. V62/15602
COLUMBUS, OHIO	A	16236	
		REV A	PAGE 24

DES	SCRIPTION	Symbol		Limits		Unit
	Power and Clocking – C			Тур	Max	
	Power and Clocking – C	ontinued.				
	Clock Specificatio	ons				
OSC1 Crystal Circuit Requi	•					
Crystal parallel resonance frequency	Fundamental mode oscillation only	$f_{\sf xtal}$		32.768		kHz
Crystal frequency stability and tolerance <u>17/</u>	Maximum RTC error = 10.512 minutes per year		-20.0		20.0	ppm
	Maximum RTC error = 26.28 minutes per year		-50.0		50.0	ppm
C1 capacitance		C _{C1}	12.0		24.0	pF
C2 capacitance		C _{C2}	12.0		24.0	pF
Shunt capacitance		Cshunt			1.5	pF
Crystal effective series resistance	fxtal = 32.768 kHz, oscillator has nominal negative resistance of 725 k Ω and worstcase negative resistance of 250 k Ω	ESR			80	kΩ
OSC1 Crystal Circuit Chara	cteristics (See Figure 15)					
Shunt capacitance of GCZ packa		Cpkg		0.01		pF
typical crystal power dissipation	tal, and CL should be used to yield a value. Using the maximum values parameters yields a maximum power	P _{xtal}		<u>20</u> /		
Start-up time		t _{sX}		2		s
OSC1 LVCMOS Reference (Clock Requirements (See Figure 10	6)				
Frequency, LVCMOS reference	clock	$f(\text{RTC}_{\text{XTALIN}})$		32.768		kHz
Frequency, LVCMOS reference clock <u>21</u> /	Maximum RTC error =10.512 minutes/year	- · - <i>i</i>	-20.0		20.0	ppm
	Maximum RTC error =26.28 minutes/year		-50.0		50.0	ppm
Duty cycle, LVCMOS reference of	clock period	$t_{dc(RTC_XTALIN)}$	45%		55%	
Jitter peak-to-peak, LVCMOS ref	erence clock period	$t_{jpp(RTC_XTALIN)}$	-1%		1%	
Time, LVCMOS reference clock	rise	tr(rtc_xtalin)			5	ns
Time, LVCMOS reference clock	fall	tf(rtc_xtalin)			5	ns

TABLE I. Electrical performance characteristics - Continued. $\underline{1}/\underline{2}/\underline{3}/$

DLA LAND AND MARITIME	SIZE	CODE IDENT NO.	DWG NO. V62/15602
COLUMBUS, OHIO	A	16236	
		REV A	PAGE 25

No	Test	Symbol		Limits		Unit
			Min	Тур	Max	
	Peripheral I	nformation ar	nd Timings			
	Controll	er Area Network				
Timi	ng Requirements for DCANx Receive (See	Figure 17)	. ,			
	Maximum programmable baud rate	fbaud(baud)			1	Mbps
1	Pulse duration, receive data bit	t _{w(RX)}	H – 2 <u>22</u> /		H + 2 <u>22</u> /	ns
Swit	ching Characteristics for DCANx Transmit	(See Figure 17)	·			
	Maximum programmable baud rate	fbaud(baud)			1	Mbp
2	Pulse duration, transmit data bit	t _{w(TX)}	H – 2 <u>22</u> /		H+2 <u>22</u> /	ns
	DMTimer E	ectrical Data an	d Timing			
Timi	ng Requirements for DMTimer [1-7] (See	Figure 18)				
1	Cycle time, TCLKIN	t _{c(TCLKIN)}	4P + 1 <u>23</u> /			ns
Swit	ching Characteristics for DMTimer [4-7] (See Figure 18)				
		4	4P - 3 23/			ns
2	Pulse duration, high	tw(timerxh)	-1 - 0 20			
2 3	Pulse duration, high Pulse duration, low	tw(TIMERxH)	4P - 3 <u>23</u> /			ns
	Pulse duration, low	t _{w(TIMERxL)}	4P - 3 <u>23</u> /	tch		
3	Pulse duration, low Ethernet Media Acce	t _{w(TIMERxL)}	4P - 3 <u>23</u> /	tch		
3 EMA	Pulse duration, low	t _{w(TIMERxL)}	4P - 3 <u>23</u> /	tch		
3 EMA	Pulse duration, low Ethernet Media Acce C and Switch Timing Conditions	t _{w(TIMERxL)}	4P - 3 <u>23</u> /	tch	5 <u>24</u> /	
3 EMA	Pulse duration, low Ethernet Media Acce C and Switch Timing Conditions Conditions	t _{w(TIMERxL)}	4P - 3 <u>23</u> / EMAC) and Swi	tch	5 <u>24</u> / 5 <u>24</u> /	ns
3 EMA Input	Pulse duration, low Ethernet Media Acce C and Switch Timing Conditions Conditions Input signal rise time	tw(TIMERxL)	4P - 3 23/ EMAC) and Swi ⁻ 1 <u>24</u> /	tch		ns
3 EMA Input	Pulse duration, low Ethernet Media Acce C and Switch Timing Conditions Conditions Input signal rise time Input signal fall time	tw(TIMERxL)	4P - 3 23/ EMAC) and Swi ⁻ 1 <u>24</u> /	tch		ns
3 EMA Input	Pulse duration, low Ethernet Media Acce Conditions Conditions Input signal rise time Input signal fall time Input signal fall time ut Condition Output load capacitance	tw(TIMERXL) ess Controller (E	4P - 3 <u>23</u> / EMAC) and Swi ⁻ 1 <u>24</u> / 1 <u>24</u> /	tch	5 <u>24</u> /	ns ns ns
3 EMA Input	Pulse duration, low Ethernet Media Acce Conditions Conditions Input signal rise time Input signal fall time Input signal fall time ut Condition Output load capacitance	tw(TIMERxL) ess Controller (E tR tr CLOAD	4P - 3 <u>23</u> / EMAC) and Swi ⁻ 1 <u>24</u> / 1 <u>24</u> /	tch	5 <u>24</u> /	ns ns ns
3 EMA Input Outpu	Pulse duration, low Ethernet Media Acce C and Switch Timing Conditions Conditions Input signal rise time Input signal fall time ut Condition Output load capacitance ng Requirements for MDIO_DATA (See Fi	tw(TIIMERxL) ess Controller (E tR tF CLOAD gure 19)	4P - 3 23/ EMAC) and Swi 1 24/ 1 24/ 3		5 <u>24</u> /	ns ns ns pF
3 EMA Input Output Timit 1 2	Pulse duration, low Ethernet Media Acce Conditions Conditions Input signal rise time Input signal fall time ut Condition Output load capacitance M Requirements for MDIO_DATA (See Fi Setup time, MDIO valid before MDC high Hold time, MDIO valid from MDC high	tw(TIMERXL) ess Controller (E tR tF CLOAD gure 19) tsu(MDIO-MDC)	4P - 3 23/ EMAC) and Swi 1 24/ 1 24/ 3 90		5 <u>24</u> /	ns ns ns pF
3 EMA Input Output Timit 1 2	Pulse duration, low Ethernet Media Acce Conditions Conditions Input signal rise time Input signal fall time ut Condition Output load capacitance M Requirements for MDIO_DATA (See Fi Setup time, MDIO valid before MDC high Hold time, MDIO valid from MDC high	tw(TIMERxL) tw(TIMERxL) tess Controller (E tr tr tr CLOAD gure 19) tsu(MDIO-MDC) th(MDIO-MDC)	4P - 3 23/ EMAC) and Swi 1 24/ 1 24/ 3 90		5 <u>24</u> /	ns ns ns pF
3 EMA Input Outpu Timi 1 2 Swite	Pulse duration, low Ethernet Media Acce Conditions Conditions Input signal rise time Input signal fall time ut Condition Output load capacitance ng Requirements for MDIO_DATA (See Fi Setup time, MDIO valid before MDC high Hold time, MDIO valid from MDC high ching Characteristics for MDIO_CLK (See	tw(TIMERXL) ess Controller (E tr tr CLOAD gure 19) tsu(MDIO-MDC) th(MDIO-MDC) Figure 20)	4P - 3 23/ EMAC) and Swi 1 24/ 1 24/ 3 90 0		5 <u>24</u> /	ns ns ns pF ns ns
3 EMA Input Output 1 2 Swite 1	Pulse duration, low Ethernet Media Acce Conditions Conditions Input signal rise time Input signal fall time ut Condition Output load capacitance ng Requirements for MDIO_DATA (See Fi Setup time, MDIO valid before MDC high Hold time, MDIO valid from MDC high ching Characteristics for MDIO_CLK (See Cycle time, MDC	tw(TIMERXL) ess Controller (E tr tr CLOAD gure 19) tsu(MDIO-MDC) th(MDIO-MDC) Figure 20) tc(MDC)	4P - 3 23/ EMAC) and Swi 1 24/ 1 24/ 3 90 0		5 <u>24</u> /	ns ns ns pF ns ns ns
3 Input Output 1 2 Swite 1 2	Pulse duration, low Ethernet Media Acce Conditions Conditions Input signal rise time Input signal fall time ut Condition Output load capacitance ng Requirements for MDIO_DATA (See Fi Setup time, MDIO valid before MDC high Hold time, MDIO valid from MDC high ching Characteristics for MDIO_CLK (See Cycle time, MDC Pulse duration, MDC high	tw(TIMERXL) ess Controller (E tr tr CLOAD gure 19) tsu(MDIO-MDC) th(MDIO-MDC) Figure 20) tc(MDC) tw(MDCH)	4P - 3 23/ EMAC) and Swi 1 24/ 1 24/ 3 90 0 400 160		5 <u>24</u> /	ns ns pF ns ns ns ns
3 EMA Input Output Timin 1 2 Swite 1 2 3 4	Pulse duration, low Ethernet Media Acce Conditions Conditions Input signal rise time Input signal fall time ut Condition Output load capacitance ng Requirements for MDIO_DATA (See Fi Setup time, MDIO valid before MDC high Hold time, MDIO valid from MDC high Cycle time, MDC Pulse duration, MDC high Pulse duration, MDC low Transition time, MDC	tw(TIIMERXL) ess Controller (E tR tF CLOAD gure 19) tsu(MDIO-MDC) th(MDIO-MDC) Figure 20) tc(MDC) tw(MDCH) tw(MDCL)	4P - 3 23/ EMAC) and Swi 1 24/ 1 24/ 3 90 0 400 160		<u>5 24</u> / 30	ns ns ns pF ns ns ns ns ns ns

TABLE I. Electrical performance characteristics - Continued. 1/ 2/ 3/

DLA LAND AND MARITIME	SIZE	CODE IDENT NO.	DWG NO. V62/15602
COLUMBUS, OHIO	A	16236	
		REV A	PAGE 26

No	Test	Symbol			Limi	ts			Unit
				10 Mbps		100 Mbps			
			Min	Тур	Max	Min	Тур	Max	
	Peripheral I	nformation and	Timing	s - Con	tinued				
	Ethernet Media Acce		•			tinued.			
Tim	ning Requirements for GMII[x]_RXCLK -	•			-				
1	Cycle time, RX_CLK	t _{c(RX_CLK)}	399.96		400.04	39.996		40.004	ns
2	Pulse duration, RX_CLK high	t _{w(RX_CLKH)}	140		260	14		26	ns
3	Pulse duration, RX_CLK low	t _{w(RX_CLKL)}	140		260	14		26	ns
4	Transition time, RX_CLK	t _{t(RX_CLK)}			5			5	ns
Tim	ning Requirements for GMII[x]_TXCLK -	MII Mode (See I	Figure 23)						
1	Cycle time, TX_CLK	t _{c(TX_CLK)}	399.96		400.04	39.996		40.004	ns
2	Pulse duration, TX_CLK high	t _{w(TX_CLKH)}	140		260	14		26	ns
3	Pulse duration, TX_CLK low	tw(TX_CLKL)	140		260	14		26	ns
4	Transition time, TX_CLK	t _{t(TX_CLK)}			5			5	ns
Tim	ning Requirements for GMII[x]_RXD[3:0]	, GMII[x]_RXDV, a	nd GMII[x	[]_RXER	- MII Mo	de (Se	e Figu	re 24)	•
	Setup time, RXD[3:0] valid before RX_CLK	tsu(RXD-RX_CLK)							
1	Setup time, RX_DV valid before RX_CLK	$t_{su(RX_DV-RX_CLK)}$	8			8			ns
	Setup time, RX_ER valid before RX_CLK	tsu(RX_ER-RX_CLK)							
	Hold time RXD[3:0] valid after RX_CLK	th(RX_CLK-RXD)	_						
2	Hold time RX_DV valid after RX_CLK	th(RX_CLK-RX_DV)	8			8			ns
	Hold time RX_ER valid after RX_CLK	$t_{h(RX_CLK-RX_ER)}$							
Sw	itching Characteristics for GMII[x]_TXD	[3:0], and GMII[x]_	TXEN - M	II Mode	(See Fi	gure 25)			
1	Delay time, TX_CLK high to TXD[3:0] valid	td(TX_CLK-TXD)	5		25	5		25	ns
•	Delay time, TX_CLK to TX_EN valid	td(TX_CLK-TX_EN)	Ũ		_0			_3	

TABLE I. Electrical performance characteristics - Continued. 1/ 2/ 3/

DLA LAND AND MARITIME	SIZE	CODE IDENT NO.	DWG NO. V62/15602
COLUMBUS, OHIO	A	16236	
		REV A	PAGE 27

No	Test	Symbol		Limits		Unit
			Min	Тур	Max	
	Peripheral Informat	tion and Timings	- Continued	t		
	Ethernet Media Access Cont	•				
Tim	ing Requirements for RMII[x]_REFCLK - RMII N	. ,				
1	Cycle time, REF_CLK	t _{c(REF_CLK)}	, 19.999		20.001	ns
2	Pulse duration, REF_CLK high	tw(REF_CLKH)	7		13	ns
3	Pulse duration, REF_CLK low	tw(REF_CLKL)	7		13	ns
Tim	ing Requirements for RMII[x]_RXD[1:0], RMII[x]	_CRS_DV, and RMII	x]_RXER - RI	MII Mode	(See Figure	27)
	Setup time, RXD[1:0] valid before REF_CLK	tsu(RXD-REF_CLK)				
1	Setup time, CRS_DV valid before REF_CLK	$t_{su(CRS_DV-REF_CLK)}$	4			ns
	Setup time, RX_ER valid before REF_CLK	tsu(RX_ER-REF_CLK)				
	Hold time RXD[1:0] valid after REF_CLK	$t_{h(REF_CLK-RXD)}$				
2	Hold time, CRS_DV valid after REF_CLK	th(REF_CLK-CRS_DV)	2			ns
	Hold time, RX_ER valid after REF_CLK	$t_{h(REF_CLK-RX_ER)}$				
Swi	tching Characteristics for RMII[x]_TXD[1:0], an	d RMII[x]_TXEN - RM	II Mode (See	Figure 28	5)	
1	Delay time, REF_CLK high to TXD[1:0] valid	$t_{d(REF_CLK-TXD)}$	2		13	
	Delay time, REF_CLK to TXEN valid	td(REF_CLK-TXEN)	—			ns
2	Rise time, TXD outputs	t _{r(TXD})	1		5	
-	Rise time, TX EN output	tr(TX EN)			J J	ns
3	Fall time, TXD outputs	t _{f(TXD)}	1		5	
0	Fall time, TX EN output	tf(TX EN)			5	ns

TABLE I. <u>Electrical performance characteristics</u> - Continued. <u>1/ 2/ 3/</u>

DLA LAND AND MARITIME	SIZE	CODE IDENT NO.	DWG NO. V62/15602
COLUMBUS, OHIO	A	16236	
		REV A	PAGE 28

No	Test	Symbol			Lin	nits			Unit
			10	Mps	100	Mps	100	0 Mps	
			Min	Max	Min	Max	Min	Max	
	Peripheral Informa	ation and Ti	mings	s - Cont	tinued				
	Ethernet Media Access Co		-			tinued	L		
Tim	ning Requirements for RGMII[x]_RCLK - RGMI	•	,				-		
1	Cycle time, RXC	t _{c(RXC)}	360	440	36	44	7.2	8.8	ns
2	Pulse duration, RXC high	t _{w(RXCH)}	160	240	16	24	3.6	4.4	ns
3	Pulse duration, RXC low	t _{w(RXCL)}	160	240	16	24	3.6	4.4	ns
4	Transition time, RXC	t _{t(RXC)}		0.75		0.75		0.75	ns
Tim	ing Requirements for RGMII[x]_RD[3:0], and	RGMII[x]_RCT	L - RG	MII Mode	e (See	Figure	30)	I	
1	Setup time, RD[3:0] valid before RXC high or low	t _{su(RD-RXC)}	1		1		1		ns
	Setup time, RX CTL valid before RXC high or low	t _{su(RX CTL-RXC)}	1		1		1		ns
2	Hold time, RD[3:0] valid after RXC high or low	t _{h(RXC-RD)}	1		1		1		ns
	Hold time, RX_CTL valid after RXC high or low	th(RXC-RX_CTL)	1		1		1		ns
3	Transition time, RD	t _{t(RD)}		0.75		0.75		0.75	ns
	Transition time, RX_CTL	t _{t(RX_CTL)}		0.75		0.75		0.75	ns
Sw	itching Characteristics for RGMII[x]_TCLK - R	GMII Mode (See Fig	ure 31)					
1	Cycle time, TXC	t _{c(TXC)}	360	440	36	44	7.2	8.8	ns
2	Pulse duration, TXC high	t _{w(TXCH)}	160	240	16	24	3.6	4.4	ns
3	Pulse duration, TXC low	t _{w(TXCL)}	160	240	16	24	3.6	4.4	ns
4	Transition time, TXC	t _{t(TXC)}		0.75		0.75		0.75	ns
Sw	itching Characteristics for RGMII[x]_TD[3:0], a	and RGMII[x]_	TCTL -	RGMII	lode (S	ee Figu	ıre 32)		
1	TD to TXC output skew	t _{sk(TD-TXC)}	-0.5	0.5	-0.5	0.5	-0.5	0.5	ns
	TX_CTL to TXC output skew	tsk(TX_CTL-TXC)	-0.5	0.5	-0.5	0.5	-0.5	0.5	ns
2	Transition time, TD	t _{t(TD)}		0.75		0.75		0.75	ns
	Transition time, TX_CTL	$t_{t(TX_CTL)}$		0.75		0.75		0.75	ns

TABLE I. Electrical performance characteristics - Continued. 1/ 2/ 3/

DLA LAND AND MARITIME	SIZE	CODE IDENT NO.	DWG NO. V62/15602
COLUMBUS, OHIO	A	16236	
		REV A	PAGE 29

TABLE I. Electrical performance characteristics - Continued. 1/ 2/

Test	Symbol		Limits	Unit		
		Min	in Typ Max			
Peripheral Information	n and Timing	gs – Continue	ed			
External Memory Interfaces - Gene	eral-Purpose	- Memory Contr	roller (GPM	C)		
GPMC and NOR Flash Timing Conditions—Synchrono	us Mode (Se	e Figure 33 thro	ough 37)			
Input Conditions						

input conditione				
Input signal rise time	t _R	1	5	ns
Input signal fall time	t⊨	1	5	ns
Output Condition				
Output load capacitance	CLOAD	3	30	pF

No	Test	Symbol		Limits					
			OPP	100	OP	50			
			Min Max		Min	Max			
	Devision and Liminan Continued								

Peripheral Information and Timings – Continued

External Memory Interfaces – *General-Purpose Memory Controller (GPMC) - Continued* GPMC and NOR Flash Timing Requirements – Synchronous Modee <u>27</u>/ (See Figure 33 through 37)

e and nerve activities of the second s			egai e ee		/	
Setup time, input data gpmc_ad[15:0] valid before output clock gpmc_clk high	tsu(dV-clkH)	3.2		11.1		ns
Hold time, input data gpmc_ad[15:0] valid after output clock gpmc_clk high	t _{h(clk} H-d∨)	4.74		4.74		ns
Setup time, input wait gpmc_wait[x] <u>25</u> / valid before output clock gpmc_clk high	tsu(wait∨-clkH)	3.2		3.2		ns
Hold time, input wait gpmc_wait[x] <u>25</u> / valid after output clock_gpmc_clk high	t _{h(clkH-wait∨)}	4.74		4.74		ns
Frequency <u>40</u> /, output clock gpmc_clk	1 / t _{c(clk)}		100		50	MHz
Typical pulse duration, output clock gpmc_clk high	t _{w(clkH)}	0.5P <u>37</u> /	0.5P <u>37</u> /	0.5P <u>37</u> /	0.5P <u>37</u> /	ns
Typical pulse duration, output clock gpmc_clk low	t _{w(clkL)}	0.5P <u>37</u> /	0.5P <u>37</u> /	0.5P <u>37</u> /	0.5P <u>37</u> /	ns
Duty cycle error, output clock gpmc_clk	tdc(clk)	-500	500	-500	500	ps
Jitter standard deviation <u>30</u> /, output clock gpmc_clk	tJ(clk)		33.33		33.33	ps
Rise time, output clock gpmc_clk	tR(clk)		2		2	ns
Fall time, output clock gpmc_clk	tF(clk)		2		2	ns
Rise time, output data gpmc_ad[15:0]	tR(do)		2		2	ns
Fall time, output data gpmc_ad[15:0]	tF(do)		2		2	ns
	Setup time, input data gpmc_ad[15:0] valid before output clock gpmc_clk high Hold time, input data gpmc_ad[15:0] valid after output clock gpmc_clk high Setup time, input wait gpmc_wait[x] <u>25</u> / valid before output clock gpmc_clk high Hold time, input wait gpmc_wait[x] <u>25</u> / valid after output clock gpmc_clk high Frequency <u>40</u> /, output clock gpmc_clk high Typical pulse duration, output clock gpmc_clk high Typical pulse duration, output clock gpmc_clk low Duty cycle error, output clock gpmc_clk Jitter standard deviation <u>30</u> /, output clock gpmc_clk Rise time, output clock gpmc_clk Rise time, output clock gpmc_clk Rise time, output data gpmc_ad[15:0]	Setup time, input data gpmc_ad[15:0] valid before output clock gpmc_clk hightsu(dV-clkH)Hold time, input data gpmc_ad[15:0] valid after output clock gpmc_clk highth(clkH-dV)Setup time, input wait gpmc_wait[x] 25/ valid before output clock gpmc_clk hightsu(waitV-clkH)Hold time, input wait gpmc_wait[x] 25/ valid after output clock gpmc_clk highth(clkH-waitV)Frequency 40/, output clock gpmc_clk high1 / tc(clk)Typical pulse duration, output clock gpmc_clk hightw(clkH)Typical pulse duration, output clock gpmc_clk lowtw(clkL)Duty cycle error, output clock gpmc_clktdc(clk)Jitter standard deviation 30/, output clock gpmc_clktR(clk)Fall time, output clock gpmc_clktR(clk)Fall time, output data gpmc_ad[15:0]tR(do)	Setup time, input data gpmc_ad[15:0] valid before output clock gpmc_clk hightsu(dV-clkH)3.2Hold time, input data gpmc_ad[15:0] valid after output clock gpmc_clk highth(clkH-dV)4.74Setup time, input wait gpmc_wait[x] 25/ valid before output clock gpmc_clk hightsu(waitV-clkH)3.2Hold time, input wait gpmc_wait[x] 25/ valid after output clock gpmc_clk highth(clkH-waitV)4.74Hold time, input wait gpmc_wait[x] 25/ valid after output clock gpmc_clk highth(clkH-waitV)4.74Frequency 40/, output clock gpmc_clk highth(clkH-waitV)4.74Typical pulse duration, output clock gpmc_clk hightw(clkH)0.5P 37/Duty cycle error, output clock gpmc_clktdc(clk)-500Jitter standard deviation 30/, output clock gpmc_clktJ(clk)-500Fall time, output clock gpmc_clktR(clk)Fall time, output clock gpmc_clkKise time, output data gpmc_ad[15:0]tR(do)tR(do)	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	output clock gpmc_clk hightransmittertsu(dv-cikH)3.211.1Hold time, input data gpmc_ad[15:0] valid after output clock gpmc_clk highth(ckH-dV)4.744.74Setup time, input wait gpmc_wait[x]25/ 25/ valid before output clock gpmc_clk hightsu(waitV-clkH)3.23.2Hold time, input wait gpmc_wait[x]25/ 25/ valid after output clock gpmc_clk highth(ckH-waitV)4.744.74Hold time, input wait gpmc_wait[x]25/ 25/ valid after output clock gpmc_clk highth(ckH-waitV)4.744.74Frequency40/, output clock gpmc_clk highth(ckH-waitV)4.7450Typical pulse duration, output clock gpmc_clk hightw(ckH)0.5P 37/0.5P 37/0.5P 37/Typical pulse duration, output clock gpmc_clk lowtw(ckL)0.5P 37/0.5P 37/0.5P 37/0.5P 37/Duty cycle error, output clock gpmc_clktdc(clk)-500500-500500Jitter standard deviation30/, output clock gpmc_clktd(clk)222Fall time, output clock gpmc_clktF(clk)222Rise time, output dlock gpmc_clktF(clk)222

DLA LAND AND MARITIME	SIZE	CODE IDENT NO.	DWG NO. V62/15602
COLUMBUS, OHIO	A	16236	
		REV A	PAGE 30

No	Test	Symbol		Li	mits		Unit
			OP	P100	0	P50	
			Min	Max	Min	Max	

TABLE I. Electrical performance characteristics - Continued. 1/2/

Peripheral Information and Timings – Continued External Memory Interfaces - General-Purpose Memory Controller (GPMC) - Continued NOR Flash Switching Characteristics – Synchronous Mode - Continued 27/ (See Figure 33 through

GPN	IC and NOR Flash Switching Characteristics – S	•	•		•	,		37)
F2	Delay time, output clock gpmc_clk rising edge to outpu		td(clkH-csnV)	F – 2.2	F + 4.5	F – 3.2	F + 9.5	ns
	select gpmc_csn[x] <u>26</u> / transition			<u>31</u> /	<u>31</u> /	<u>31</u> /	<u>31</u> /	
F3	Delay time, output clock gpmc_clk rising edge to outpu	t chip	td(clkH-csnIV)	E – 2.2	E + 4.5	E – 3.2	E + 9.5	ns
	select gpmc_csn[x] <u>26</u> / invalid			<u>30</u> /	<u>30</u> /	<u>30</u> /	<u>30</u> /	
F4	Delay time, output address gpmc_a[27:1] valid to output	ut clock	t _{d(aV-clk)}	B – 4.5	B + 2.3	B – 5.5	B + 12.3	ns
	gpmc_clk first edge			<u>27</u> /	<u>27</u> /	<u>27</u> /	<u>27</u> /	
F5	Delay time, output clock gpmc_clk rising edge to outpu gpmc_a[27:1] invalid	t address	td(clkH-al∨)	-2.3	4.5	-3.3	14.5	ns
F6	Delay time, output lower byte enable and command lat		$t_{d(\text{be}[x]nV\text{-}clk)}$	B – 1.9	B + 2.3	B – 2.9	B + 12.3	ns
	<pre>gpmc_be0n_cle, output upper byte enable gpmc_be1n output clock gpmc_clk first edge</pre>	valid to		<u>27</u> /	<u>27</u> /	<u>27</u> /	<u>27</u> /	
F7	Delay time, output clock gpmc_clk rising edge to outpu		t _{d(clkH-}	D – 2.3	D + 1.9	D – 3.3	D + 11.9	ns
	enable and command latch enable gpmc_be0n_cle, ou byte enable gpmc_be1n invalid	itput upper	be[x]nIV)	<u>29</u> /	<u>29</u> /	<u>29</u> /	<u>29</u> /	
F8	Delay time, output clock gpmc_clk rising edge to output		td(clkH-advn)	G – 2.3	G + 4.5	G – 3.3	G + 9.5	ns
	valid and address latch enable gpmc_advn_ale transition			<u>32</u> /	<u>32</u> /	<u>32</u> /	<u>32</u> /	
F9	Delay time, output clock gpmc_clk rising edge to outpu	t address	td(clkH-advnl∨)	D – 2.3	D + 3.5	D – 3.3	D + 9.5	ns
	valid and address latch enable gpmc_advn_ale invalid			<u>29</u> /	<u>29</u> /	<u>29</u> /	<u>29</u> /	
F10	Delay time, output clock gpmc_clk rising edge to output	t enable	td(clkH-oen)	H – 2.3	H + 3.5	H – 3.3	H + 8.5	ns
	gpmc_oen transition			<u>33</u> /	<u>33</u> /	<u>33</u> /	<u>33</u> /	
F11	Delay time, output clock gpmc_clk rising edge to output	t enable	td(clkH-oenI∨)	E-2.3	E + 3.5	E – 3.3	E + 8.5	ns
	gpmc_oen invalid			<u>33</u> /	<u>33</u> /	<u>33</u> /	<u>33</u> /	
F14	Delay time, output clock gpmc_clk rising edge to outpu	t write	td(clkH-wen)	I – 2.3	I + 4.5	I – 3.3	I + 9.5	ns
	enable gpmc_wen transition			<u>34</u> /	<u>34</u> /	<u>34</u> /	<u>34</u> /	
F15	Delay time, output clock gpmc_clk rising edge to outpu gpmc_ad[15:0] transition	t data	td(clkH-do)	J – 2.3	J + 1.9	J – 3.3	J + 11.9	ns
= 1 =				<u>25</u> /	<u>25</u> /	<u>25</u> /	<u>25</u> /	
F17	Delay time, output clock gpmc_clk rising edge to outpu enable and command latch enable gpmc_be0n_cle tra		td(clkH-be[x]n)	J – 2.3	J + 1.9	J – 3.3	J + 11.9	ns
540				<u>25</u> /	<u>25</u> /	<u>25</u> /	<u>25</u> /	
F18	Pulse duration, output chip selectgpmc_csn[x] <u>26</u> / low	Read	t _{w(csn∨)}	A <u>26</u> /		A <u>26</u> /		ns
		Write		A <u>26</u> /		A <u>26</u> /		ns
F19	Pulse duration, output lower byte enable and command latch enable gpmc_be0n_cle, output upper	Read	t _{w(be[x]nV)}	C <u>28</u> /		C <u>28</u> /		ns
	byte enable gpmc_be1n low	Write		C <u>28</u> /		C <u>28</u> /		ns
F20	Pulse duration, output address valid and address	Read	t _{w(advnV)}	K <u>38</u> /		K <u>38</u> /		ns
	latch enable gpmc_advn_ale low	Write		K <u>38</u> /		K <u>38</u> /		ns

DLA LAND AND MARITIME	SIZE	CODE IDENT NO.	DWG NO. V62/15602
COLUMBUS, OHIO	A	16236	
		REV A	PAGE 31

TABLE I. Electrical performance characteristics - Continued. 1/ 2/

Test	Symbol	Limits			Unit					
		Min	Тур	Max						
Peripheral Information and Timings – Continued										
External Memory Interfaces - General-Purpose Memory Controller (GPMC)										

GPMC and NOR Flash Timing Conditions—Asynchronous Mode (See figure 38 through 43)

Input Conditions				
Input signal rise time	t _R	1	5	ns
Input signal fall time	tF	1	5	ns
Output Condition				
Output load capacitance	CLOAD	3	30	pF

No	Test	Limits				
		OP	P100	OP	P50	
			Max	Min	Max	
GPI	MC and NOR Flash Internal Timing Parameters—Asyn (See Figure 38 through 43)	chronous M	ode – Contin	ued. <u>42</u> / <u>43</u> /		
FI1	Delay time, output data gpmc_ad[15:0] generation from internal functional clock GPMC_FCLK <u>44</u> /		6.5		6.5	ns
FI2	Delay time, input data gpmc_ad[15:0] capture from internal functional clock GPMC_FCLK <u>44</u> /		4		4	ns
FI3	Delay time, output chip select gpmc_csn[x] generation from internal functional clock GPMC_FCLK <u>44</u> /		6.5		6.5	ns
FI4	Delay time, output address gpmc_a[27:1] generation from internal functional clock GPMC_FCLK <u>44</u> /		6.5		6.5	ns
FI5	Delay time, output address gpmc_a[27:1] valid from internal functional clock GPMC_FCLK <u>44</u> /		6.5		6.5	ns
FI6	Delay time, output lower-byte enable and command latch enable gpmc_be0n_cle, output upper-byte enable gpmc_be1n generation from internal functional clock GPMC_FCLK <u>44</u> /		6.5		6.5	ns
FI7	Delay time, output enable gpmc_oen generation from internal functional clock GPMC_FCLK <u>44</u> /		6.5		6.5	ns
FI8	Delay time, output write enable gpmc_wen generation from internal functional clock GPMC_FCLK <u>44</u> /		6.5		6.5	ns
FI9	Skew, internal functional clock GPMC_FCLK 44/		100		100	ns

DLA LAND AND MARITIME	SIZE	CODE IDENT NO.	DWG NO. V62/15602
COLUMBUS, OHIO	A	16236	
		REV A	PAGE 32

TABLE I.	Electrical	performance characteristics - Continued.	1/	<u>2</u> /
----------	------------	--	----	------------

No	Test	Symbol	Limits				Unit
			OPP100		OF	P50	
			Min	Max	Min	Max	

Peripheral Information and Timings – Continued External Memory Interfaces - *General-Purpose Memory Controller (GPMC)*

GPMC and	GPMC and NOR Flash Timing Requirements—Asynchronous Mode - Continued. (See Figure 38 through 43)						
FA5 <u>45</u> /	Data access time	t _{acc(d)}	H <u>49</u> /	H <u>49</u> /	ns		
FA20 <u>46</u> /	Page mode successive data access time	$t_{acc1-pgmode(d)}$	P <u>48</u> /	P <u>48</u> /	ns		
FA21 <u>47</u> /	Page mode first data access time	tacc2-pgmode(d)	H <u>49</u> /	H <u>49</u> /	ns		

See footnote at end of table.

No	Test		Symbol		Lii	nits		Unit
				OPF	100	OP	P50	
				Min	Max	Min	Max	
GPM	C and NOR Flash Switching Characteristics	s—Asyn	chronous Mo	de – Conti	nued			
	(See Figure 38 through 43)			1	1	I	1	
	Rise time, output data gpmc_ad[15:0]		tR(d)		2		2	ns
	Fall time, output data gpmc_ad[15:0]		t _{F(d)}		2		2	ns
FA0	Pulse duration, output lower-byte enable and	Read	tw(be[x]nV)		N <u>62</u> /		N <u>62</u> /	ns
	command latch enable gpmc_be0n_cle, output upper-byte enable gpmc_be1n valid time	Write			N <u>62</u> /		N <u>62</u> /	ns
FA1	Pulse duration, output chip select Read tw(csnV) gpmc_csn[x] <u>63</u> / low Write	t _{w(csnV)}		A <u>51</u> /		A <u>51</u> /	ns	
		Write			A <u>51</u> /		A <u>51</u> /	ns
FA3	Delay time, output chip select gpmc_csn[x] <u>63</u> / valid to output address valid and address latch	Read	td(csnV-advnIV)	B – 0.2 <u>52</u> /	B + 2.0 <u>52</u> /	B – 5 <u>52</u> /	B + 5 <u>52</u> /	ns
	enable gpmc_advn_ale invalid	Write		B – 0.2 <u>52</u> /	B + 2.0 <u>52</u> /	B – 5 <u>52</u> /	B + 5 <u>52</u> /	ns
FA4	Delay time, output chip select gpmc_csn[x] <u>63</u> /v output enable gpmc_oen invalid (Single read)	alid to	td(csnV-oenIV)	C – 0.2 <u>53</u> /	C + 2.0 <u>53</u> /	C – 5 <u>53</u> /	C + 5 <u>53</u> /	ns
FA9	Delay time, output address gpmc_a[27:1] valid to chip select gpmc_csn[x] 63/ valid	output	t _{d(aV-csnV)}	J – 0.2 <u>59</u> /	J + 2.0 <u>59</u> /	J — 5 <u>59</u> /	J + 5 <u>59</u> /	ns
FA10	Delay time, output lower-byte enable and command latch enable gpmc_be0n_cle, output upper-byte enable gpmc_be1n valid to output chip select gpmc_csn[x] 63/ valid		td(be[x]nV-csnV)	J – 0.2 <u>59</u> /	J + 2.0 <u>59</u> /	J – 5 <u>59</u> /	J + 5 <u>59</u> /	ns
FA12	Delay time, output chip select gpmc_csn[x] <u>63</u> / output address valid and address latch enable gpmc_advn_ale valid	valid to	td(csnV-advnV)	K – 0.2 <u>60</u> /	K + 2.0 <u>60</u> /	K – 5 <u>60</u> /	K + 5 <u>60</u> /	ns

DLA LAND AND MARITIME	SIZE	CODE IDENT NO.	DWG NO. V62/15602
COLUMBUS, OHIO	A	16236	
		REV A	PAGE 33

No	Test	Symbol	Limits				Unit
			OPP100		OPP50		
			Min	Max	Min	Max	

Peripheral Information and Timings – Continued External Memory Interfaces - *General-Purpose Memory Controller (GPMC)*

GPMC and NOR Flash Switching Characteristics—Asynchronous Mode (See Figure 38 through 43)

	S and North hash ownerning on a dotter blog Async			guio oo u	nough a	,	
FA13	Delay time, output chip select gpmc_csn[x] <u>63</u> / valid to output enable gpmc_oen valid	t _{d(csnV-oenV)}	L – 0.2 <u>61</u> /	L + 2.0 <u>61</u> /	L – 5 <u>61</u> /	L + 5 <u>61</u> /	ns
FA16	Pulse durationm output address gpmc_a[26:1] invalid between 2 successive read and write accesses	t _{w(al∨)}	G <u>57</u> /		G <u>57</u> /		ns
FA18	Delay time, output chip select gpmc_csn[x] <u>63</u> / valid to output enable gpmc_oen invalid (Burst read)	td(csnV-oenIV)	l – 0.2 <u>58</u> /	l + 2.0 <u>58</u> /	L – 5 <u>58</u> /	L + 5 <u>58</u> /	ns
FA20	Pulse duration, output address gpmc_a[27:1] valid - 2nd, 3rd, and 4th accesses	t _{w(a∨)}	G <u>57</u> /		G <u>57</u> /		ns
FA25	Delay time, output chip select gpmc_csn[x] <u>63</u> / valid to output write enable gpmc_wen valid	td(csnV-wenV)	E – 0.2 <u>55</u> /	E + 2.0 <u>55</u> /	E – 5 <u>55</u> /	E + 5 <u>55</u> /	ns
FA27	Delay time, output chip select gpmc_csn[x] <u>63</u> / valid to output write enable gpmc_wen invalid	td(csnV-wenIV)	F – 0.2 <u>58</u> /	F + 2.0 <u>58</u> /	F– 5 <u>58</u> /	F + 5 <u>58</u> /	ns
FA28	Delay time, output write enable gpmc_ wen valid to output data gpmc_ad[15:0] valid	t _{d(wen} ∨-d∨)		2.0		5	ns
FA29	Delay time, output data gpmc_ad[15:0] valid to output chip select gpmc_csn[x] 63/ valid	t _{d(dV-csnV)}	J – 0.2 <u>59</u> /	J + 2.0 <u>59</u> /	J — 5 <u>59</u> /	J + 5 <u>59</u> /	ns
FA37	Delay time, output enable gpmc_oen valid to output address gpmc_ad[15:0] phase end	t _{d(oen} ∨-al∨)		2.0		5	ns

See footnote at end of table.

Test	Symbol		Limits					
		Min Typ Max						
Peripheral Information	n and Timing	gs – Continued						
External Memory Interfaces - Gen	eral-Purpose	Memory Contro	ller (GPMC	:)				
GPMC and NAND Fla	•	•	•	,				
GPMC and NAND Flash Timing Conditions—Asynchro	onous Mode	(See Figure 44 th	rough 47)					
Input Conditions	-							
Input signal rise time	t _R	1		5	ns			
Input signal fall time	t⊨	1		5	ns			

Input signal fall time	tF	1	5	ns
Output Condition				
Output load capacitance	CLOAD	3	30	pF

DLA LAND AND MARITIME	SIZE	CODE IDENT NO.	DWG NO. V62/15602
COLUMBUS, OHIO	A	16236	
		REV A	PAGE 34

TABLE I. Electrical performance characteristics - Continued. 1/ 2/

No	Test		Limits			Unit
		OPF	P100	OP	P50	
		Min	Max	Min	Max	

Peripheral Information and Timings – Continued External Memory Interfaces - General-Purpose Memory Controller (GPMC) GPMC and NAND Flash—Asynchronous Mode

GPMC and NAND Flash Internal Timing Parameters—Asynchronous Mode 64/ 65/ (See Figure 44 through 47)

	and NAND Hash internal rinning rataficters—Asynchronot	$\frac{10}{10}$ $\frac{10}{10}$ $\frac{10}{10}$ $\frac{10}{10}$		
GNFI1	Delay time, output data gpmc_ad[15:0] generation from internal functional clock GPMC_FCLK) <u>50</u> /	6.5	6.5	ns
GNFI2	Delay time, input data gpmc_ad[15:0] capture from internal functional clock GPMC_FCLK 50/	4.0	4.0	ns
GNFI3	Delay time, output chip select gpmc_csn[x] generation from interna functional clock GPMC_FCL 50/	6.5	6.5	ns
GNFI4	Delay time, output address valid and address latch enable gpmc_advn_ale generation from internal functional clock GPMC_FCLK 50/	6.5	6.5	ns
GNFI5	Delay time, output lower-byte enable and command latch enable gpmc_be0n_cle generation from internal functional clock GPMC_FCLK 50/	6.5	6.5	ns
GNFI6	Delay time, output enable gpmc_oen generation from internal functional clock GPMC_FCLK 50/	6.5	6.5	ns
GNFI7	Delay time, output write enable gpmc_wen generation from internal functional clock GPMC_FCLK 50/	6.5	6.5	ns
GNFI8	Skew, functional clock GPMC_FCLK 50/	100	100	ps

DLA LAND AND MARITIME	SIZE	CODE IDENT NO.	DWG NO. V62/15602
COLUMBUS, OHIO	A	16236	
		REV A	PAGE 35

TABLE I. Electrical performance	characteristics - Continued.	1/	2/
	<u> </u>	<u></u>	=

No	Test	Symbol		Lim	nits		Unit
			OPF	°100	OPI	P50	
			Min	Max	Min	Max	

Peripheral Information and Timings – Continued External Memory Interfaces –*General-Purpose Memory Controller (GPMC)* GPMC and NAND Flash—Asynchronous Mode

GPMC and NAND Flash Timing Requirements—Asynchronous Mode (See Figure 44 throu
--

GNF12	Access time, input data gpmc_ad[15:0]	t _{acc(d)}		J <u>67</u> /		J <u>67</u> /	ns
<u>66</u> /							
GPMC	and NAND Flash Switching Characteristics— A	synchronous	Mode (See	Figure 44	through 4	7)	
	Rise time, output data gpmc_ad[15:0]	t _{R(d)}		2		2	ns
	Fall time, output data gpmc_ad[15:0]	t _{F(d)}		2		2	ns
GNF0	Pulse duration, output write enable gpmc_wen valid	t _{w(wen} ∨)	A <u>68</u> /		A <u>68</u> /		ns
GNF1	Delay time, output chip select gpmc_csn[x] <u>80</u> / valid to output write enable gpmc_wen valid	$t_{d(csnV-wenV)}$	B – 0.2 <u>69</u> /	B + 2.0 <u>69</u> /	B – 5 <u>69</u> /	B + 5 <u>69</u> /	ns
GNF2	Delay time, output lower-byte enable and command latch enable gpmc_be0n_cle high to output write enable gpmc_wen valid	tw(cleH-wenV)	C – 0.2 <u>70</u> /	C + 2.0 <u>70</u> /	C – 5 <u>70</u> /	C + 5 <u>70</u> /	ns
GNF3	Delay time, output data gpmc_ad[15:0] valid to output write enable gpmc_wen valid	$t_{w(\text{wenV-dV})}$	D – 0.2 <u>71</u> /	D + 2.0 <u>71</u> /	D – 5 <u>71</u> /	D + 5 <u>71</u> /	ns
GNF4	Delay time, output write enable gpmc_wen Delay time, output write enable gpmc_wen	t _{w(wenIV-dIV)}	E – 0.2 <u>72</u> /	E + 2.0 <u>72</u> /	E – 5 <u>72</u> /	E + 5 <u>72</u> /	ns
GNF5	Delay time, output write enable gpmc_wen invalid to output lower-byte enable and command latch enable gpmc_be0n_cle invalid	t _{w(wenIV-cleIV)}	F – 0.2 <u>73</u> /	F + 2.0 <u>73</u> /	F – 5 <u>73</u> /	F + 5 <u>73</u> /	ns
GNF6	Delay time, output write enable gpmc_wen invalid to output chip select gpmc_csn[x] <u>80</u> / invalid	tw(wenIV-csnIV)	G – 0.2 <u>74</u> /	G + 2.0 <u>74</u> /	G – 5 <u>74</u> /	G + 5 <u>74</u> /	ns
GNF7	Delay time, output address valid and address latch enable gpmc_advn_ale high to output write enable gpmc_wen valid	tw(aleH-wen∨)	C – 0.2 <u>70</u> /	C + 2.0 <u>70</u> /	C – 5 <u>70</u> /	C + 5 <u>70</u> /	ns
GNF8	Delay time, output write enable gpmc_we invalid to output address valid and address latchenable gpmc_advn_ale invalid	tw(wenIV-aleIV)	F – 0.2 <u>73</u> /	F + 2.0 <u>73</u> /	F – 5 <u>73</u> /	F + 5 <u>73</u> /	ns
GNF9	Cycle time, write	t _{c(wen)}		H <u>75</u> /		H <u>75</u> /	
GNF10	Delay time, output chip select gpmc_csn[x] <u>80</u> / valid to output enable gpmc_oen valid	t _{d(csnV-oenV)}	l – 0.2 <u>76</u> /	l + 2.0 <u>76</u> /	l – 5 <u>76</u> /	l + 5 <u>76</u> /	ns
GNF13	Pulse duration, output enable gpmc_oen valid	tw(oen∨)		K <u>77</u> /		K <u>77</u> /	ns
GNF14	Cycle time, read	t _{c(oen)}	L <u>78</u> /		L <u>78</u> /		ns
GNF15	Delay time, output enable gpmc_oen invalid to output chip select gpmc_csn[x] 80/ invalid	tw(oenIV-csnIV)	M– 0.2 <u>79</u> /	M + 2.0 <u>79</u> /	M – 5 <u>79</u> /	M + 5 <u>79</u> /	ns

DLA LAND AND MARITIME	SIZE	CODE IDENT NO.	DWG NO. V62/15602
COLUMBUS, OHIO	A	16236	
		REV A	PAGE 36

No	Test		Limits		Unit
		Min	Тур	Max	
	Peripheral Information and Tim	nings – Continu	Ied		
	External Memory Interfaces – <i>mDDR(LPDDR), DD</i>	•		rv Interfac	е
	mDDR (LPDDR) Routing G			,	-
Swit	ching Characteristics for LPDDR Memory Interface (See Figur				
1	t _{c(DDR_CK)} Cycle time, DDR CK and DDR CKn	5		148/	ns
	t _{c(DDR_CKn)}	_			
Con	patible JEDEC LPDDR Devices (Per Interface) <u>81</u> /				
1	JEDEC LPDDR device speed grade	LPDDR400			
2	2 JEDEC LPDDR device bit width	X16		X16	Bits
3	JEDEC LPDDR device count			1	Devices
4	JEDEC LPDDR device terminal count			60	Terminals
PCB	Stackup Specifications <u>82</u> /				
1	PCB routing and plane layers	4			
2	Signal routing layers	2			
3	Full ground layers under LPDDR routing region	1			
4	Number of ground plane cuts allowed within LPDDR routing region			0	
5	Full VDDS_DDR power reference layers under LPDDR routing region	1			
6	Number of layers between LPDDR routing layer and reference ground plane			0	
7	PCB routing feature size		4		mils
8	PCB trace width, w		4		mils
9	PCB BGA escape via pad size <u>83</u> /		18	20	mils
10	PCB BGA escape via hole size <u>83</u> /		10		mils
11	Single-ended impedance, Zo <u>84</u> /		50	75	Ω
12	Impedance control <u>85</u> / <u>86</u> /	Zo - 5	Zo	Zo + 5	Ω
	ement Specifications (See Figure 49) <u>87</u> /				
1	X <u>88</u> / <u>89</u> /			1750	mils
2	Y <u>88</u> / <u>89</u> /			1280	mils
3	Y Offset 88/ 89/ 90/			650	mils
4	Clearance from non-LPDDR signal to LPDDR keepout region <u>91</u> / <u>92</u> /	′ 4			w
Bulk	Bypass Capacitor <u>93</u> /				
1	AM3358-EP VDDS_DDR bulk bypass capacitor count	1			Devices
2	AM3358-EP VDDS_DDR bulk bypass total capacitance	10			μF
3	DDR#1 bulk bypass capacitor count	1			Devices
4	LPDDR#1 bulk bypass total capacitance	10			μF
5	LPDDR#2 bulk bypass capacitor count <u>94</u> /	1			Devices
6	LPDDR#2 bulk bypass capacitor count <u>54</u> / LPDDR#2 bulk bypass total capacitance 94/	10		-	μF

TABLE I. Electrical performance characteristics - Continued. $\underline{1}/\underline{2}/$

DLA LAND AND MARITIME	SIZE	CODE IDENT NO.	DWG NO. V62/15602
COLUMBUS, OHIO	A	16236	
		REV A	PAGE 37

TABLE I. Electrical performance characteristics - Continued. 1/	ormance characteristics - Continued. 1/	2/
---	---	----

No	Test		Limits		Unit
		Min	Тур	Max	<u> </u>

Peripheral Information and Timings – Continued External Memory Interfaces – *mDDR(LPDDR), DDR2, DDR3, DDR3L Memory Interface* mDDR (LPDDR) Routing Guidelines

High-Speed Bypass Capacitors 1 HS bypass capacitor package size 95/ 0402 10 mils 2 Distance from HS bypass capacitor to device being bypassed 250 mils 2 3 Number of connection vias for each HS bypass capacitor 96/ Vias 4 Trace length from bypass capacitor contact to connection via 30 mils Number of connection vias for each AM3358-EP VDDS_DDR and VSS terminal 5 1 Vias 6 Trace length from AM3358-EP VDDS DDR and VSS terminal to connection via 35 mils 7 Number of connection vias for each LPDDR device power and ground terminal 1 Vias Trace length from LPDDR device power and ground terminal to connection via 8 35 mils 9 AM3358-EP VDDS_DDR HS bypass capacitor count 97/ 10 Devices AM3358-EP VDDS DDR HS bypass capacitor total capacitance 0.6 10 μF LPDDR device HS bypass capacitor count 97/98/ 8 11 Devices 12 LPDDR device HS bypass capacitor total capacitance 98/ 0.4 μF LPDDR Signal Terminations CK net class 99/ Zo 100/ 0 22 1 Ω 2 ADDR CTRL net class 99/ 101/ 0 22 Zo 100/ Ω 102/ 3 DQS0, DQS1, DQ0, and DQ1 net classes 0 22 Zo 100/ Ω CK and ADDR_CTRL Routing Specification 103/ 104/ (See Figure 50) 1 Center-to-center CK spacing 2w 2 CK differential pair skew length mismatch 104/ 105/ 25 mils CK B-to-CK C skew length mismatch 3 25 mils 4 Center-to-center CK to other LPDDR trace spacing 106/ 4w 5 CK and ADDR_CTRL nominal trace length 107/ CACLM -CACLM CACLM+mils 50 50 6 ADDR_CTRL-to-CK skew length mismatch 100 mils 7 ADDR CTRL-to-ADDR CTRL skew length mismatch 100 mils 8 Center-to-center ADDR CTRL to other LPDDR trace spacing 106/ 4w Center-to-center ADDR CTRL to other ADDR CTRL trace spacing 106/ 9 3w 10 ADDR_CTRL A-to-B and ADDR_CTRL A-to-C skew length mismatch 104/ 100 mils ADDR CTRL B-to-C skew length mismatch 100 11 mils

DLA LAND AND MARITIME	SIZE	CODE IDENT NO.	DWG NO. V62/15602
COLUMBUS, OHIO	A	16236	
		REV A	PAGE 38

No	Test	Limits			Unit
		Min	Tvp	Max	

Peripheral Information and Timings – Continued

External Memory Interfaces – *mDDR(LPDDR), DDR2, DDR3, DDR3L Memory Interface* mDDR (LPDDR) Routing Guidelines

DQS[x] and DQ[x] Routing Specification <u>108</u>/ (See Figure 51)

Center-to-center DQS[x] spacing		2w	
Center-to-center DDR_DQS[x] to other LPDDR trace spacing 109/	4w		
DQS[x] and DQ[x] nominal trace length <u>110</u> /	DQLM – 50	DQLM - 50	mils
DQ[x]-to-DQS[x] skew length mismatch <u>110</u> /		100	mils
DQ[x]-to-DQ[x] skew length mismatch <u>110</u> /		100	mils
Center-to-center DQ[x] to other LPDDR trace spacing 109/ 111/	4w		
Center-to-center DQ[x] to other DQ[x] trace spacing <u>109</u> / <u>112</u> /	3w		
	Center-to-center DDR_DQS[x] to other LPDDR trace spacing 109/ DQS[x] and DQ[x] nominal trace length 110/ DQ[x]-to-DQS[x] skew length mismatch 110/ DQ[x]-to-DQ[x] skew length mismatch 110/ Center-to-center DQ[x] to other LPDDR trace spacing 109/ 111/	Center-to-center DDR_DQS[x] to other LPDDR trace spacing 109/ 4w DQS[x] and DQ[x] nominal trace length 110/ DQLM – 50 DQ[x]-to-DQS[x] skew length mismatch 110/ DQ[x]-to-DQ[x] skew length mismatch 110/ DQ[x]-to-DQ[x] skew length mismatch 110/ 4w Center-to-center DQ[x] to other LPDDR trace spacing 109/ 111/ 4w	Center-to-center DDR_DQS[x] to other LPDDR trace spacing 109/ 4w DQS[x] and DQ[x] nominal trace length 110/ DQLM - 50 50 DQ[x]-to-DQS[x] skew length mismatch 110/ 100 DQ[x]-to-DQ[x] skew length mismatch 110/ 100 Center-to-center DQ[x] to other LPDDR trace spacing 109/ 111/ 4w

DLA LAND AND MARITIME	SIZE	CODE IDENT NO.	DWG NO. V62/15602
COLUMBUS, OHIO	A	16236	
		REV A	PAGE 39

No	Test		Limits		Unit
		Min	Тур	Max	
	Peripheral Information and Timing	s – Continue	ed		
	External Memory Interfaces – mDDR(LPDDR), DDR2, I	DDR3, DDR3	L Memor	v Interface)
	DDR2 Routing Guidelines	-			
Swit	ching Characteristics for DDR2 Memory Interface (See Figure 52)				
1	Cycle time, DDR_CK and DDR_CKn t _{c(DDR_CK)} t _{c(DDR_CKn)}			8 <u>113</u> /	ns
Com	patible JEDEC DDR2 Devices (Per Interface) <u>114</u> /				
1	JEDEC DDR2 device speed grade <u>115</u> /	DDR2-533			
2	JEDEC DDR2 device bit width	x8		X16	bits
3	JEDEC DDR2 device count	1		2	devices
4	JEDEC DDR2 device terminal count <u>116</u> /		60	84	terminals
PCE	Stackup Specifications <u>117/</u>	1		_	
1	PCB routing and plane layers	4			
2	Signal routing layers	2			
3	Full ground layers under DDR2 routing region	1			
4	Number of ground plane cuts allowed within DDR2 routing region			0	
5	Full VDDS_DDR power reference layers under DDR2 routing region	1			
6	Number of layers between DDR2 routing layer and reference ground plane			0	
7	PCB routing feature size		4		mils
8	PCB trace width, w		4		mils
9	PCB BGA escape via pad size <u>118</u> /		18	20	mils
10	PCB BGA escape via hole size <u>118</u> /		10		mils
11	Single-ended impedance, Zo <u>119</u> /		50	75	Ω
12	Impedance control <u>120</u> / <u>121</u> /	Zo - 5	Zo	Zo + 5	Ω
Plac	ement Specifications <u>122</u> / (See Figure 53)				
1	X <u>123/ 124/</u>			1750	mils
2	Y <u>123/ 124/</u>			1280	mils
3	Y Offset <u>123</u> / <u>124</u> / <u>125</u> /			650	mils
4	Clearance from non-DDR2 signal to DDR2 keepout region <u>126</u> / <u>127</u> /	4			w
Bulk	Bypass Capacitors <u>128</u> /				1
1	AM3358-EP VDDS_DDR bulk bypass capacitor count	1			Devices
2	AM3358-EP VDDS_DDR bulk bypass total capacitance	10			μF
3	DDR2 number 1 bulk bypass capacitor count	1			Devices
4	DDR2 number 1 bulk bypass total capacitance	10			μF
5	DDR2 number 2 bulk bypass capacitor count <u>129</u> /	1			Devices
6	DDR2 number 2 bulk bypass total capacitance <u>129</u> /	10			μF

DLA LAND AND MARITIME	SIZE	CODE IDENT NO.	DWG NO. V62/15602
COLUMBUS, OHIO	A	16236	
		REV A	PAGE 40

TABLE I. El	ectrical perform	nance characteristics	- Continued.	1/	2/
-------------	------------------	-----------------------	--------------	----	----

No	Test		Limits		Unit
		Min	Тур	Max	
	Devinberal Information and Timinga	Continued			

Peripheral Information and Timings – Continued External Memory Interfaces – *mDDR(LPDDR), DDR2, DDR3, DDR3L Memory Interface* DDR2 Routing Guideline

HS Bypass Capacitors

	Sypass capacitors				
1	HS bypass capacitor package size <u>130</u> /			0402	10 mils
2	Distance from HS bypass capacitor to device being bypassed			250	mils
3	Number of connection vias for each HS bypass capacitor <u>131</u> /	2			Vias
4	Trace length from bypass capacitor contact to connection via			30	mils
5	Number of connection vias for each AM3358-EP VDDS_DDR and VSS terminal	1			Vias
6	Trace length from AM3358-EP VDDS_DDR and VSS terminal to connection via			35	mils
7	Number of connection vias for each DDR2 device power and ground terminal	1			Vias
8	Trace length from DDR2 device power and ground terminal to connection via			35	mils
9	AM3358-EP VDDS_DDR HS bypass capacitor count <u>132</u> /	10			Devices
10	AM3358-EP VDDS_DDR HS bypass capacitor total capacitance	0.6			μF
11	DDR2 device HS bypass capacitor count <u>132</u> / <u>133</u> /	8			Devices
12	DDR2 device HS bypass capacitor total capacitance <u>133</u> /	0.4			μF
DDR	2 Signal Terminations				
1	CK net class <u>134</u> /	0		10	Ω
2	ADDR_CTRL net class <u>134</u> / <u>135</u> / <u>136</u> /	0	22	Zo <u>137</u> /	Ω
3	DQS0, DQS1, DQ0, and DQ1 net classes <u>138</u> /	N/A		N/A	Ω
Low	er-Frequency DDR2 Signal Terminations				
1	CK net class <u>134</u> /	0	22	Zo <u>137</u> /	Ω
2	ADDR_CTRL net class <u>134</u> / <u>135</u> / <u>136</u> /	0	22	Zo <u>137</u> /	Ω
3	DQS0, DQS1, DQ0, and DQ1 net classes	0	22	Zo <u>137</u> /	Ω
CK a	and ADDR_CTRL Routing Specification <u>139/ 140/</u> (See Figure 54)				
1	Center-to-center CK spacing			2w	
2	CK differential pair skew length mismatch <u>140</u> / <u>141</u> /			25	mils
3	CK B-to-CK C skew length mismatch			25	mils
4	Center-to-center CK to other DDR2 trace spacing <u>142</u> /	4w			
5	CK and ADDR_CTRL nominal trace length <u>143</u> /	CACLM - 50	CACLM	CACLM+- 50	mils
6	ADDR_CTRL-to-CK skew length mismatch			100	mils
7	ADDR_CTRL-to-ADDR_CTRL skew length mismatch			100	mils
8	Center-to-center ADDR_CTRL to other DDR2 trace spacing <u>142</u> /	4w			
9	Center-to-center ADDR_CTRL to other ADDR_CTRL trace spacing <u>142</u> /	3w			
10	ADDR_CTRL A-to-B and ADDR_CTRL A-to-C skew length mismatch <u>140</u> /			100	mils
11	ADDR CTRL B-to-C skew length mismatch			100	mils

DLA LAND AND MARITIME	SIZE	CODE IDENT NO.	DWG NO. V62/15602
COLUMBUS, OHIO	A	16236	
		REV A	PAGE 41

No	Test	Limits			Unit
		Min	Тур	Max	

Peripheral Information and Timings – Continued External Memory Interfaces – *mDDR(LPDDR), DDR2, DDR3, DDR3L Memory Interface* DDR2 Routing Guidelines

DQS[x] and DQ[x] Routing Specification <u>144</u>/ (See Figure 55)

1	Center-to-center DQS[x] spacing		2w	
2	DQS[x] differential pair skew length mismatch <u>141</u> /		25	mils
3	Center-to-center DDR_DQS[x] to other LPDDR trace spacing <u>142</u> /	4w		
4	DQS[x] and DQ[x] nominal trace length <u>145/</u>	DQLM – 50	DQLM - 50	mils
5	DQ[x]-to-DQS[x] skew length mismatch <u>145</u> /		100	mils
6	DQ[x]-to-DQ[x] skew length mismatch <u>145/</u>		100	mils
7	Center-to-center DQ[x] to other LPDDR trace spacing <u>142</u> / <u>146</u> /	4w		
8	Center-to-center DQ[x] to other DQ[x] trace spacing $142/$ $147/$	3w		

DLA LAND AND MARITIME	SIZE	CODE IDENT NO.	DWG NO. V62/15602
COLUMBUS, OHIO	A	16236	
		REV A	PAGE 42

No	Test			Limits		Unit	
			Min	Тур	Max		
Swit		rnal Memory Interfaces D	I Information and Timings – <i>mDDR(LPDDR), DDR2, DI</i> DR3 and DDR3L Routing Guide nory Interface (See fFgure 56)	DR3, DDR3L I		Interface	
1	$t_{c(DDR_CK)}$ $t_{c(DDR_CKn)}$	Cycle time, DDR_CK and D	DR_CKn	2.5		3.3 <u>149</u> /	ns
Com		C DDR3 Devices (Per Interf	ace)				1
1	JEDEC DD	R3 device speed grade	Test conditions tc(DDR_CK) and tc(DDR_CKn) = 3.3 ns tc(DDR_CK) and tc(DDR_CKn) = 2.5 ns	DDR3-800 DDR3-1600			
2 3	JEDEC DDR3 device bit width JEDEC DDR3 device count 150/		X8 1		X16 2	bits devices	
РСВ	Stackup S	pecifications 151/					1
1	PCB routing	g and plane layers		4			
2	Signal routing layers		2				
3	Full ground	layers under DDR3 routing re	egion <u>152</u> /	1			
4	Full VDDS	DDR power reference layers	under DDR3 routing region <u>152</u> /	1			
5	Number of	reference plane cuts allowed	within DDR3 routing region <u>153</u> /			0	
6			layer and reference plane <u>154</u> /			0	
7	-	g feature size			4		mils
8	PCB trace v				4		mils
9		escape via pad size <u>155</u> /			18	20	mils
10		escape via hole size /			10		mils
11		ed impedance, Zo <u>156</u> /			50	75	Ω
12 Diag		control <u>157/158</u> /	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	Zo - 5	Zo	Zo + 5	Ω
1	-	cifications <u>159</u> / (See Fi 61/ 162/	gure 57)			1000	mils
2	Y 160/ 1					600	mils
2		<u> 60/</u> 161/ 162/				1500	mils
4		rom non-LPDDR signal to DD	0R3 keepout region 163/ 164/	4		1000	W

DLA LAND AND MARITIME	SIZE	CODE IDENT NO.	DWG NO. V62/15602
COLUMBUS, OHIO	A	16236	
		REV A	PAGE 43

No	Test		Unit		
		Min	Тур	Max	
	Peripheral Information and Timings External Memory Interfaces – <i>mDDR(LPDDR), DDR2, D</i> DDR3 and DDR3L Routing Guide	DR3, DDR3		Interface	
	Bypass Capacitors <u>165</u> /	•			
1	AM3358-EP VDDS_DDR bulk bypass capacitor count	2			Devices
2	AM3358-EP VDDS_DDR bulk bypass total capacitance	20			μF
3	DDR3 number 1 bulk bypass capacitor count	2			Devices
4	DDR3 number 1 bulk bypass total capacitance	20			μF
5	DDR3 number 2 bulk bypass capacitor count <u>166</u> /	2			Devices
6	DDR3 number 2 bulk bypass total capacitance <u>166</u> /	20			μF
High	n-Speed Bypass Capacitor				
1	HS bypass capacitor package size <u>167/</u>		0201	0402	10 mils
2	Distance, HS bypass capacitor to AM3358-EP VDDS_DDR and VSS terminal being bypassed <u>168</u> / <u>169</u> / <u>170</u> /			400	mils
3	AM3358-EP VDDS_DDR HS bypass capacitor count	20			Devices
4	AM3358-EP VDDS_DDR HS bypass capacitor total capacitance	1			μF
5	Trace length from AM3358-EP VDDS_DDR and VSS terminal to connection via <u>168</u> /		35	70	mils
6	Distance, HS bypass capacitor to DDR3 device being bypassed <u>171</u> /			150	mils
7	DDR3 device HS bypass capacitor count <u>172</u> /	12			Devices
8	DDR3 device HS bypass capacitor total capacitance <u>172</u> /	0.85			μF
9	Number of connection vias for each HS bypass capacitor <u>173</u> / <u>174</u> /	2			vias
10	Trace length from bypass capacitor connect to connection via <u>168</u> / <u>174</u> /		35	100	mils
11	Number of connection vias for each DDR3 device power and ground terminal <u>175</u> /	1			vias
12	Trace length from DDR3 device power and ground terminal to connection via <u>168</u> / <u>173</u> /		35	60	mils
CK a	and ADDR_CTRL Routing Specification <u>176</u> / <u>177</u> / <u>178</u> /				
1	A1 + A2 length			2500	mils
2	A1 + A2 skew			25	mils
3	A3 length			660	mils
4	A3 skew <u>179</u> /			25	mils
5	A3 skew 180/			125	mils
6	AS length			100	mils

DLA LAND AND MARITIME	SIZE	CODE IDENT NO.	DWG NO. V62/15602
COLUMBUS, OHIO	A	16236	
		REV A	PAGE 44

No	Test		Unit		
		Min	Тур	Max	
	Peripheral Information and Timings	– Continue	d		
	External Memory Interfaces – mDDR(LPDDR), DDR2, D	DR3, DDR3L	Memory Ir	nterface	
	DDR3 and DDR3L Routing Guide	lines	-		
CK a	nd ADDR_CTRL Routing Specification - Continued <u>176/ 177/ 178/</u>	1		1	
7	AS skew			25	mils
8	AS+ and AS– length			70	mils
9	AS+ and AS- skew			5	mils
10	AT length <u>181</u> /		500		mils
11	AT skew <u>182</u> /		100		mils
12	AT skew <u>183</u> /			5	mils
13	CK and ADDR_CTRL nominal trace length <u>184</u> /	CACLM-50	CACLM	CACLM+50	mils
14	Center-to-center CK to other DDR3 trace spacing <u>185/</u>	4w			
15	Center-to-center ADDR_CTRL to other DDR3 trace spacing <u>185</u> / <u>186</u> /	4w			
16	Center-to-center ADDR_CTRL to other ADDR_CTRL trace spacing 185/	3w			
17	CK center-to-center spacing <u>187</u> /				
18	CK spacing to other net <u>185/</u>	4w			
19	Rcp <u>188</u> /	Zo - 1	Zo	Zo + 1	Ω
20	Rtt <u>188</u> / <u>189</u> /	Zo - 5	Zo	Zo + 5	Ω
DQS	[x] and DQ[x] Routing Specification <u>190</u> / <u>191</u> /				
1	DQ0 nominal length <u>192</u> / <u>193</u> /			DQLM0	mils
2	DQ1 nominal length <u>192</u> / <u>194</u> /			DQLM1	mils
3	DQ[x] skew <u>195</u> /			25	mils
4	DQS[x] skew			5	mils
5	DQS[x]-to-DQ[x] skew <u>195/ 196/</u>			25	mils
6	Center-to-center DQ[x] to other DDR3 trace spacing <u>197</u> / <u>198</u> /	4w			
7	Center-to-center DQ[x] to other DQ[x] trace spacing <u>197</u> / <u>199</u> /	3w			
8	DQS[x] center-to-center spacing 200/				
9	DQS[x] center-to-center spacing to other net <u>197</u> /	4w			

DLA LAND AND MARITIME	SIZE	CODE IDENT NO.	DWG NO. V62/15602
COLUMBUS, OHIO	A	16236	
		REV A	PAGE 45

No	Test	Test Symbol Limits				Unit	
		-	STAND	OARD MODE	FAST	MODE	
			Min	Max	Min	Max	
	Peripheral Informa	ation and Tir	nings – C	Continued			
	1 ² C - 1 ² C El	ectrical Data a	and Timin	g			
l ² C	Timing Conditions – Slave Mode (See Figure 60	0)		-			
Outp	put Condition			1			
	Capacitive load for each bus line			400		400	pF
Tim	ing Requirements for I ² C Input Timings (See F	igure 61)		1			
1	Cycle time, SCL	$t_{c(SCL)}$	10		2.5		μs
2	Setup time, SCL high before SDA low (for a repeated START condition)	$t_{\text{su}(\text{SCLH-SDAL})}$	4.7		0.6		μs
3	Hold time, SCL low after SDA low (for a START and a repeated START condition)	th(SDAL-SCLL)	4		0.6		μs
4	Pulse duration, SCL low	t _{w(SCLL)}	4.7		1.3		μs
5	Pulse duration, SCL high	t _{w(SCLH)}	4		0.6		μs
6	Setup time, SDA valid before SCL high	t _{su(SDAV-SCLH)}	250		100 <u>201</u> /		μs
7	Hold time, SDA valid after SCL low	th(SCLL-SDAV)	0 <u>202</u> /	3.45 <u>203</u> /	0 <u>202</u> /	0.9 <u>203</u> /	μs
8	Pulse duration, SDA high between STOP and START conditions	t _{w(SDAH)}	4.7		1.3		μs
9	Rise time, SDA	t _{r(SDA)}		1000		300	ns
10	Rise time, SCL	tr(SCL)		1000		300	ns
11	Fall time, SDA	t _{f(SDA)}		300		300	ns
12	Fall time, SCL	tf(SCL)		300		300	ns
13	Setup time, high before SDA high (for STOP condition)	t _{su(SCLH-SDAH)}	4		0.6		μs
14	Pulse duration, spike (must be suppressed)	t _{w(SP)}	0	50	0	50	ns

DLA LAND AND MARITIME	SIZE	CODE IDENT NO.	DWG NO. V62/15602
COLUMBUS, OHIO	A	16236	
		REV A	PAGE 46

No	Test	Symbol		Limi	ts		Unit
			STANDA	RD MODE	FAST	MODE	
			Min	Max	Min	Max	
	Peripheral Info	rmation and	Timings –	Continued	k		
	l ² C - l ²	C Electrical Da	ata and Tim	ing			
Swi	tching Characteristics for I ² C Output Timi	ngs (See Figu	re 61)	_			
15	Cycle time, SCL	t _{c(SCL)}	10		2.5		μs
16	Setup time, SCL high before SDA low (for a repeated ART condition)	t _{su(SCLH-SDAL)}	4.7		0.6		μs
17	Hold time, SCL low after SDA low (for a START and a repeated START condition)	th(SDAL-SCLL)	4		0.6		μs
18	Pulse duration, SCL low	t _{w(SCLL)}	4.7		1.3		μs
19	Pulse duration, SCL high	t _{w(SCLH})	4		0.6		μs
20	Setup time, SDA valid before SCL high	t _{su(SDAV-SCLH)}	250		100		μs
21	Hold time, SDA valid after SCL low	th(SCLL-SDAV)	0	3.45	0	0.9	μs
22	Pulse duration, SDA high between STOP and START conditions	t _{w(SDAH)}	4.7		1.3		μs
23	Rise time, SDA	tr(SDA)		1000		300	ns
24	Rise time, SCL	tr(SCL)		1000		300	ns
25	Fall time, SDA	t _{f(SDA)}		300		300	ns
26	Fall time, SCL	t _{f(SCL)}		300		300	ns
27	Setup time, high before SDA high (for STOP condition)	t _{su(SCLH-SDAH)}	4		0.6		μs

TABLE I. Electrical performance characteristics - Continued. $\underline{1}/\underline{2}/$

DLA LAND AND MARITIME	SIZE	CODE IDENT NO.	DWG NO. V62/15602
COLUMBUS, OHIO	A	16236	
		REV A	PAGE 47

No	Test	Symbol	Limits				
			OPF	100	OP	P50	
			Min	Max	Min	Max	
	Peripheral Info	ormation and 1	Timings –	Continued	l		
	JTAG	Electrical Data	and Timin	g			
Tim	ing Requirements for JTAG (See Figure	62)		-			
1	Cycle time, TCK	t _{c(TCK)}	81.5		104.5		ns
1a	Pulse duration, TCK high (40% of tc)	t _{w(тскн)}	32.6		41.8		ns
1b	Pulse duration, TCK low (40% of tc)	t _{w(TCKL)}	32.6		41.8		ns
3	Input setup time, TDI valid to TCK high	t _{su(TDI-TCKH)}	3		3		ns
	Input setup time, TMS valid to TCK high	t _{su(TMS-TCKH)}	3		3		ns
4	Input hold time, TDI valid from TCK high	th(тскн-трі)	8.05		8.05		ns
	Input hold time, TMS valid from TCK high	th(TCKH-TMS)	8.05		8.05		ns
Swi	itching Characteristics for JTAG (See Fig	gure 62)					
2	Delay time, TCK low to TDO valid	td(TCKL-TDO)	3	27.6	4	36.8	ns

No	Test	Symbol	Limits	Unit

Min Peripheral Information and Timings – Continued

LCD Controller (LCDC)

LCD Interface Display Driver (LIDD Mode)

Max

1

3

ns

LCD Controller Timing Conditions

Output Condition					
Output load capacitance	LIDD mode	CLOAD	5	60	pF
	Raster mode	OLOAD	3	30	pF

No	Test	t Symbol		OPP100					
			Min	Max					
	Peripheral Information and Timings – Continued 7.10 LCD Controller (LCDC) 7.10.1 LCD Interface Display Driver (LIDD Mode)								
Timi	ing Requirements for LCD LIDD Mode	(See Figure 64 through 72)							
16	Setup time, LCD_DATA[15:0] valid before LCD_MEMORY_CLK high	t _{su} (LCD_DATA-LCD_MEMORY_CLK)	18		ns				
17	Hold time, LCD_DATA[15:0] valid after LCD_MEMORY_CLK high	th(LCD_MEMORY_CLK-LCD_DATA)	0		ns				

tt(LCD_DATA)

See footnote at end of table.

Transition time, LCD_DATA[15:0]

18

DLA LAND AND MARITIME	SIZE	CODE IDENT NO.	DWG NO. V62/15602
COLUMBUS, OHIO	A	16236	
		REV A	PAGE 48

No Test		Symbol	OPF	P100	Unit
			Min	Max	
	Peripheral Information ar	nd Timings – Continue	d		
	LCD Control	•			
	LCD Interface Display	· · ·			
Swit	ching Characteristics for LCD LIDD Mode (See Figure	. ,			
1	Cycle time, LCD_MEMORY_CLK	t _{c(LCD_MEMORY_CLK)}	23.7		ns
2	Pulse duration, LCD_MEMORY_CLK high	tw(LCD_MEMORY_CLKH)	0.45 tc	0.55tc	ns
3	Pulse duration, LCD_MEMORY_CLK low	tw(LCD_MEMORY_CLKL)	0.45 tc	0.55tc	ns
4	Delay time, LCD_MEMORY_CLK high to LCD_DATA[15:0] valid (write)	CD_MEMORY_CLK high to LCD_DATA[15:0] td(LCD_MEMORY_CLK-LCD_DATAV)		7	ns
5	Delay time, LCD_MEMORY_CLK high to LCD_DATA[15:0] invalid (write)	td(lcd_memory_clk-lcd_datai)	0		ns
6	Delay time, LCD_MEMORY_CLK high to LCD_AC_BIAS_EN	td(LCD_MEMORY_CLK- LCD_AC_BIAS_EN)	0	6.8	ns
7	Transition time, LCD_AC_BIAS_EN	tt(LCD_AC_BIAS_EN)	1	10	ns
8	Delay time, LCD_MEMORY_CLK high to LCD_VSYNC	td(LCD_MEMORY_CLK-LCD_VSYNC)	0	7	ns
9	Transition time, LCD_VSYNC	$t_{t(LCD_VSYNC)}$	1	10	ns
10	Delay time, LCD_MEMORY_CLK high to LCD_HSYNC	td(LCD_MEMORY_CLK-LCD_HYSNC)	0	7	ns
11	Transition time, LCD_HYSNC	t _{t(LCD_HSYNC)}	1	10	ns
12	Delay time, LCD_MEMORY_CLK high to LCD_PCLK	td(LCD_MEMORY_CLK-LCD_PCLK)	0	7	ns
13	Transition time, LCD_PCLK	$t_{t(LCD_PCLK)}$	1	10	ns
14	Delay time, LCD_MEMORY_CLK high to LCD_DATA[15:0] high-Z	$t_{d}(\texttt{LCD}_\texttt{MEMORY}_\texttt{CLK}\texttt{-}\texttt{LCD}_\texttt{DATAZ})$	0	7	ns
15	Delay time, LCD_MEMORY_CLK high to LCD_DATA[15:0] driven	td(LCD_MEMORY_CLK-LCD_DATA)	0	7	ns
19	Transition time, LCD_MEMORY_CLK	tt(LCD_MEMORY_CLK)	1	2.5	ns
20	Transition time, LCD_DATA	tt(LCD_DATA)	1	10	ns

DLA LAND AND MARITIME	SIZE	CODE IDENT NO.	DWG NO. V62/15602	
COLUMBUS, OHIO	A	16236		
		REV A	PAGE 49	

No	Test	Symbol		Lim	its		Unit
			OPP50		OPF	P100	
			Min	Max	Min	Max	
	Peripheral Ir	nformation and Tin	nings – Co	ontinued			
	-	LCD Controller (LC	CDC)				
		LCD Raster Mo	de				
Swi	itching Characteristics for LCD Raster	Mode (See Figure 73	3 through fig	gure 76)			
1	Cycle time, pixel clock	$t_{c(LCD_PCLK)}$	15.8		7.9		ns
2	Pulse duration, pixel clock high	t _{w(LCD_PCLKH)}	0.45 tc	0.55tc	0.45 tc	0.55tc	ns
3	Pulse duration, pixel clock low	tw(LCD_PCLKL)	0.45 tc	0.55tc	0.45 tc	0.55tc	ns
4	Delay time, LCD_PCLK to LCD_DATA[23:0] valid (write)	td(LCD_PCLK-LCD_DATAV)		3.0		1.9	ns
5	Delay time, LCD_PCLK to LCD_DATA[23:0] invalid (write)	td(LCD_PCLK-LCD_DATAI)	-3.0		-1.7		ns
6	Delay time, LCD_PCLK to LCD_AC_BIAS_EN	td(LCD_PCLK- LCD_AC_BIAS_EN)	-3.0	3.0	-1.7	1.9	ns
7	Transition time, LCD_AC_BIAS_EN	tt(LCD_AC_BIAS_EN)	0.5	2.4	0.5	2.4	ns
8	Delay time, LCD_PCLK to LCD_VSYNC	td(LCD_PCLK-LCD_VSYNC)	-3.0	3.0	-1.7	1.9	ns
9	Transition time, LCD_VSYNC	tt(LCD_VSYNC)	0.5	2.4	0.5	2.4	ns
10	Delay time, LCD_PCLK to LCD_HSYNC	td(LCD_PCLK-LCD_HSYNC)	-3.0	3.0	-1.7	1.9	ns
11	Transition time, LCD_HSYNC	tt(LCD_HSYNC)	0.5	2.4	0.5	2.4	ns
12	Transition time, LCD_PCLK	tt(LCD_PCLK)	0.5	2.4	0.5	2.4	ns
13	Transition time, LCD_DATA	t(LCD_DATA)	0.5	2.4	0.5	2.4	ns

No	Test	Symbol	Limits		Unit				
			Min	Тур	Max				
	Peripheral Information and Timings – Continued Multichannel Audio Serial Port (McASP)								

McASP Electrical Data and Timing

McASP Timing Conditions

Input Conditions			
Input signal rise time	t _R	1 <u>204</u> /	4 <u>204</u> / ns
Input signal fall time	tF	1 <u>204</u> /	4 <u>204</u> / ns
Output Condition			
Output load capacitance	CLOAD	15	30 pF

DLA LAND AND MARITIME	SIZE	CODE IDENT NO.	DWG NO. V62/15602
COLUMBUS, OHIO	A	16236	
		REV A	PAGE 50

No	Test	Symbol	Limits			Unit	
			OPP100		OPP50		
			Min	Max	Min	Max	

Peripheral Information and Timings – Continued Multichannel Audio Serial Port (McASP) McASP Electrical Data and Timing

Timing Requirements for McASP 205/ (See figure 78)

1	Cycle time, McASP[x] AHCLKR and		t _{c(AHCLKRX)}	20	40	ns
	McASP[x]_AHCLKX		-(-	-	
2	Pulse duration, McASP[x]_AHCLKR	and	t _{w(AHCLKRX)}	0.5P – 2.5	0.5P – 2.5	ns
	McASP[x]_AHCLKX high or low			<u>206</u> /	<u>206</u> /	
3	Cycle time, McASP[x]_ACLKR and McASP[x]_ACLKX		t _{c(ACLKRX)}	20	40	ns
4	Pulse duration, McASP[x]_ACLKR ar	nd	t _{w(ACLKRX)}	0.5R – 2.5	0.5R – 2.5	ns
	McASP[x]_ACLKX high or low			<u>207/</u>	<u>207</u> /	
		ACLKR and		11.5	15.5	
	Setup time, McASP[x]_AFSR and	ACLKX int				
	McASP[x] AFSX input valid before	ACLKR and	tsu(AFSRX- ACLKRX)	4	6	ns
5	McASP[x] ACLKR and	ACLKX ext in				
	McASP[x] ACLKX	ACLKR and		4	6	
		ACLKX ext out				
	Hold time, McASP[x]_AFSR and AC	ACLKR and		-1	-1	
		ACLKX int	th(ACLKRX- AFSRX)			
	McASP[x]_AFSX input valid after	ACLKR and		0.4	0.4	ns
6	McASP[x]_ACLKR and	ACLKX ext in				
	McASP[x]_ACLKX	ACLKR and		0.4	0.4	
		ACLKX ext out				
		ACLKR and		11.5	15.5	
	Setup time, McASP[x]_AXR input	ACLKX int ACLKR and	$t_{su(AXR-ACLKRX)}$		6	
_	valid before McASP[x]_ACLKR and	ACLKK and ACLKX ext in		4	б	ns
7	McASP[x]_ACLKX	ACLKR and		4	6	
		ACLKX ext out		4	0	
		ACLKR and		-1	-1	
	Hold time, McASP[x] AXR input	ACLKX int				
8	valid after McASP[x] ACLKR and	ACLKR and		0.4	0.4	ns
0	McASP[x] ACLKX	ACLKX ext in	th(ACLKRX-AXR)	0.1	0.1	115
		ACLKR and		0.4	0.4	
		ACLKX ext out				

DLA LAND AND MARITIME	SIZE	CODE IDENT NO.	DWG NO. V62/15602
COLUMBUS, OHIO	A	16236	
		REV A	PAGE 51

No	Test	Symbol	Limits			Unit	
			OPP100		OPP	OPP50	
			Min	Max	Min	Max]

Peripheral Information and Timings – Continued Multichannel Audio Serial Port (McASP) McASP Electrical Data and Timing

Switching Characteristics for McASP 205/ (See figure 78)

JW	tcning Characteristics for MCASP	<u>205/ (See ng</u>	ule 78)					
9	Cycle time, McASP[x]_AHCLKR and McASP[x]_AHCLKX		$t_{c(AHCLKRX)}$	20		40		ns
10	Pulse duration, McASP[x]_AHCLKR and McASP[x]_AHCLKX high or low	t	$t_{w(AHCLKRX)}$	0.5P – 2.5 <u>206</u> /		0.5P – 2.5 <u>206</u> /		ns
11	Cycle time, McASP[x]_ACLKR and McASP[x]_ACLKX		$t_{c(ACLKRX)}$	20		40		ns
12	Pulse duration, McASP[x]_ACLKR and McASP[x]_ACLKX high or low		tw(ACLKRX)	0.5P – 2.5 <u>207</u> /		0.5P – 2.5 <u>207</u> /		ns
	Delay time, McASP[x]_ACLKR and ACLKF McASP[x]_ACLKX transmit edge to ACLKX			0	6	0	6	
13	McASP[x]_AFSX output valid ACI in	ACLKR and ACLKX ext in	td(ACLKRX-AFSRX)	2	13.5	2	18	ns
	Delay time, McASP[x]_ACLKR and McASP[x]_ACLKX transmit edge to McASP[x]_AFSR and McASP[x]_AFSX output valid with Pad Loopback	ACLKR and ACLKX ext out		2	13.5	2	18	
	Delay time, McASP[x]_ACLKX	ACLKX in		0	6	0	6	
14	transmit edge to McASP[x]_AXR output valid	ACLKX ext in	$t_{d(\text{ACLKX-AXR})}$	2	13.5	2	18	ns
	Delay time, McASP[x]_ACLKX transmit edge to McASP[x]_AXR output valid with Pad Loopback	ACLKX ext out		2	13.5	2	18	
	Disable time, McASP[x]_ACLKX	ACLKX in		0	6	0	6	
15	transmit edge to McASP[x]_AXR output high impedance	ACLKX ext in	tdis(ACLKX-AXR)	2	13.5	2	18	ns
15	Disable time, McASP[x]_ACLKX transmit edge to McASP[x]_AXR output high impedance with pad loopback	ACLKX ext out	· · · /	2	13.5	2	18	

DLA LAND AND MARITIME	SIZE	CODE IDENT NO.	DWG NO. V62/15602	
COLUMBUS, OHIO	A	16236		
		REV A	PAGE 52	

No	Test	Symbol	Limits		Unit
			Min	Max	
	Peripheral Information and	Timings – Contin	ued		
	Multichannel Serial Port	t Interface (McSPI)			
	McSPI Electrical Da	ta and Timing			
Me	SPI Timing Conditions - Slavo Modo				

McSPI Timing Conditions – Slave Mode

Input Conditions		
Input signal rise time	tr	5 ns
Input signal fall time	tr	5 ns
Output Condition20		
Output load capacitance	Cload	20 pF

No	Test	Symbol	Limits			Unit	
			OPP100		OP	P50	
			Min	Max	Min	Max	

Peripheral Information and Timings – Continued Multichannel Serial Port Interface (McSPI) McSPI Electrical Data and Timing

Timing Requirements for McSPI Input Timings—Slave Mode (See Figure 79)

	ing requirements for McSFT input rinnings		s (See Ligui	e 13)			
1	Cycle time, SPI_CLK	t _{c(SPICLK)}	62.5		124.8		ns
2	Typical pulse duration, SPI_CLK low	t _{w(SPICLKL)}	0.5P – 3.12 <u>208</u> /	0.5P + 3.12 <u>208</u> /	0.5P – 3.12 <u>208</u> /	0.5P + 3.12 <u>208</u> /	ns
3	Typical pulse duration, SPI_CLK high	$t_{w}({ m SPICLKH})$	0.5P – 3.12 <u>208</u> /	0.5P + 3.12 <u>208</u> /	0.5P – 3.12 <u>208</u> /	0.5P + 3.12 <u>208</u> /	ns
4	Setup time, SPI_D[x] (SIMO) valid before SPI_CLK active edge <u>209</u> / <u>210</u> /	$t_{su}(SIMO-SPICLK)$	12.92		12.92		ns
5	Hold time, SPI_D[x] (SIMO) valid after SPI_CLK active edge 209/ 210/	th(SPICLK-SIMO)	12.92		12.92		ns
8	Setup time, SPI_CS valid before SPI_CLK first edge <u>209</u> /	$t_{su(CS-SPICLK)}$	12.92		12.92		ns
9	Hold time, SPI_CS valid after SPI_CLK last edge <u>209</u> /	th(SPICLK-CS)	12.92		12.92		ns
Swi	tching Characteristics for McSPI Output Ti	mings—Slave	e Mode <u>(S</u> e	e figure 80)			
6	Delay time, SPI_CLK active edge to SPI_D[x] (SOMI) transition <u>209</u> / <u>210</u> /	td(SPICLK-SOMI)	-4.00	17.12	-4.00	17.12	ns
7	Delay time, SPI_CS active edge to SPI_D[x] (SOMI) transition <u>209</u> / <u>210</u> /	td(cs-somi)		17.12		17.12	ns

DLA LAND AND MARITIME	SIZE	CODE IDENT NO.	DWG NO. V62/15602
COLUMBUS, OHIO	A	16236	
		REV A	PAGE 53

No	Test	Symbol	LOW	LOAD	HIGH I	LOAD	Unit
			Min	Max	Min	Max	
	Periph	neral Information an	d Timings –	Continue	1		
	Ī	Aultichannel Serial Po	ort Interface (McSPI)			
		McSPI Electrical D	Data and Timi	ng			
McSF	PI Timing Conditions – Master N	McSPI Electrical D	Data and Timi	ng			
	PI Timing Conditions – Master M Conditions		Data and Timi	ng			
Input C	•		Data and Timi	ng 8		8	ns
Input C	Conditions	<i>l</i> ode	Data and Timi	-		8	ns
Input C	Conditions Input signal rise time	flode tr	Data and Timi	8			

DLA LAND AND MARITIME	SIZE	CODE IDENT NO.	DWG NO. V62/15602
COLUMBUS, OHIO	A	16236	
		REV A	PAGE 54

No	Те	st	Symbol				Lim	nits				
					-	PP100			-	P50		Unit
				LOW L	OAD	HIGH L	OAD	LOW	LOAD	HIGH	LOAD	
				Min	Max	Min	Max	Min	Max	Min	Max	
Tim	ning Require	ments for N	ľ	Multichan McSF	inel Se P <i>I Elect</i>	ion and Ti rial Port Inf <i>rical Data a</i> ser Mode (S	erface (N and Timir	lcSPI) Ig	ued			
4	Setup time, s (SOMI) valid SPI CLK ac	SPI_D[x] before	t _{su(SOMI-} SPICLKH)	2.29	must	3.02		2.29		3.02		ns
5	Hold time, S (SOMI) valid SPI_CLK ac	PI_D[x] after	t _{h(SPICLKH-} SOMI)	7.25		7.25		7.7		7.7		ns
Sw	itching Char	acteristics	for McSPI	Output Ti	mings–	-Master Mod	de (See	Figure 82	2)			
1	Cycle time, S	SPI_CLK	t _{c(SPICLK)}	20.8		20.8		41.6		41.6		ns
2	Typical pulse SPI_CLK lov		t _{w(SPICLKL)}	0.5P – 1.04 <u>208</u> /	0.5P – 1.04 <u>208</u> /	0.5P – 2.08 <u>208</u> /	0.5P – 2.08 <u>208</u> /	0.5P – 1.04 <u>208</u> /	0.5P – 1.04 <u>208</u> /	0.5P – 2.08 <u>208</u> /	0.5P – 2.08 <u>208</u> /	ns
3	Typical pulse SPI_CLK hig		t _{w(SPICLKH)}	0.5P – 1.04 <u>208</u> /	0.5P – 1.04 <u>208</u> /	0.5P – 2.08 <u>208</u> /	0.5P – 2.08 <u>208</u> /	0.5P – 1.04 <u>208</u> /	0.5P – 1.04 <u>208</u> /	0.5P – 2.08 <u>208</u> /	0.5P – 2.08 <u>208</u> /	ns
	Rising time,	SPI_CLK	tr(SPICLK)		3.82		3.82		3.82		3.82	ns
	Falling time,	SPI_CLK	t _{f(SPICLK)}		3.44		3.44		3.44		3.44	ns
6	Delay time, S active edge (SIMO) trans	to SPI_D[x]	td(SPICLK- SIMO)	-3.57	3.57	-4.62	4.62	-3.57	3.57	-4.62	4.62	ns
7	Delay time, S active edge (SIMO) rans	to SPI_D[x]	t _{d(CS-SIMO)}		3.57		4.62		3.57		4.62	ns
8	Delay time, SPI_CS active to	Mode 1 and 3 212/	t _{d(CS-} SPICLK)	A – 4.2 <u>213</u> /		A – 2.54 <u>213</u> /		A – 4.2 <u>213</u> /		A – 2.54 <u>213</u> /		ns
0	SPI_CLK first edge	Mode 0 and 2 <u>212</u> /		B – 4.2 <u>214</u> /		B – 2.54 <u>214</u> /		B – 4.2 <u>214</u> /		B – 2.54 <u>214</u> /		ns
9	Delay time, SPI_CLK last edge	Mode 1 and 3 <u>212</u> /	td(SPICLK- CS)	B – 4.2 <u>214</u> /		B – 2.54 <u>214</u> /		B – 4.2 <u>214</u> /		B – 2.54 <u>214</u> /		ns
5	to SPI_CS nactive	Mode 0 and 2 <u>212</u> /		A – 4.2 <u>213</u> /		A – 2.54 <u>213</u> /		A – 4.2 <u>213</u> /		A – 2.54 <u>213</u> /		ns

TABLE I. Electrical performance characteristics - Continued. $\underline{1}/\underline{2}/$

DLA LAND AND MARITIME	SIZE	CODE IDENT NO.	DWG NO. V62/15602
COLUMBUS, OHIO	A	16236	
		REV A	PAGE 55

No	Test	Symbol	Limits			Unit
_			Min	Тур	Max	
	Peripheral Information and	Timinas – C	ontinued			

Peripheral Information and Timings – Continued Multimedia Card (MMC) Interface MMC Electrical Data and Timing

MMC Timing Conditions

Input	Conditions				
	Input signal rise time	tr	1	5	ns
	Input signal fall time	tr	1	5	ns
Outp	ut Condition				
	Output load capacitance	Cload	3	30	pF
Timi	ng Requirements for MMC[x]_CMD and MMC[x]_DAT[7:0]	(See Figure 8	3)		
1	Setup time, MMC_CMD valid before MMC_CLK rising clock edge	t _{su(CMDV-CLKH)}	4.1		ns
2	Hold time, MMC_CMD valid after MMC_CLK rising clock edge	th(CLKH-CMDV)	3.76		ns
3	Setup time, MMC_DATx valid before MMC_CLK rising clock edge	t _{su(DATV-CLKH)}	4.1		ns
4	Hold time, MMC_DATx valid after MMC_CLK rising clock edge	th(CLKH-DAT∨)	3.76		ns

No	Test	Symbol		Lin	nits		Unit
			STANDARD MODE		HIGH-SPEED MODE		
			Min	Max	Min	Max	
Swi	tching Characteristics for MMC[x]_CLK (See	e Figure 84)					
	Operating frequency, MMC_CLK	fop(CLK)		24		48	MHz
5	Operating period: MMC_CLK	tcop(CLK)	41.7		20.8		ns
	Identification mode frequency, MMC_CLK	fid(CLK)		400		400	kHz
	Identification mode period: MMC_CLK	tcid(CLK)	2500		2500		ns
6	Pulse duration, MMC_CLK low	tw(CLKL)	(0.5 × P) –		(0.5 × P) –		ns
			t _{f(CLK)} <u>215</u> /		t _{f(CLK)} <u>215</u> /		
7	Pulse duration, MMC_CLK high	tw(CLKH)	(0.5 × P) –		(0.5 × P) –		ns
			t _{f(CLK)} <u>215</u> /		t _{f(CLK)} <u>215</u> /		
8	Rise time, all signals (10% to 90%)	8 tr(CLK)		2.2		2.2	ns
9	Fall time, all signals (10% to 90%)	tf(CLK)		2.2		2.2	ns

DLA LAND AND MARITIME	SIZE	CODE IDENT NO.	DWG NO. V62/15602
COLUMBUS, OHIO	A	16236	
		REV A	PAGE 56

No	Test	Symbol		Lim	nits		Uni
			OPF	P100	OF	P50	
			Min	Max	Min	Max	
	Peripheral Info	ormation and 1	imings – (Continued	1		
	Multi	nedia Card (MN	IC) Interfac	е			
		Electrical Data	,				
Swi	tching Characteristics for MMC[x]_CMD a	nd MMC[x]_DAT	7:0] – Stand	ard Mode (See Figure	85)	
10	Delay time, MMC_CLK falling clock edge to MMC_CMD transition	$t_{\text{d}(\text{CLKL-CMD})}$	-4	14	-4	17.5	ns
11	Delay time, MMC_CLK falling clock edge to MMC_DATx transition	$t_{\text{d}(\text{CLKL-DAT})}$	-4	14	-4	17.5	ns
Swi	tching Characteristics for MMC[x]_CMD a	nd MMC[x]_DAT	7:0]—High-\$	Speed Mode	e (See Figu	ure 86)	
12	Delay time, MMC_CLK rising clock edge to MMC_CMD transition	$t_{\text{d}(\text{CLKL-CMD})}$	2.5	14	2.5	17.5	ns
13	Delay time, MMC_CLK rising clock edge to MMC DATx transition	$t_{d(CLKL-DAT)}$	2.5	14	2.5	17.5	ns

No	Test	Symbol		Limits		Unit
			Min	Тур	Max	

Peripheral Information and Timings – Continued Programmable Real-Time Unit Subsystem and Industrial Communication Subsystem (PRU-ICSS) Programmable Real-Time Unit (PRU-ICSS PRU)

PRU-ICSS PRU Timing Conditions

Outpu	ut Condition	1			1	
	Capacitive load for each bus line		Cload		30	pF
PRU	-ICSS PRU Timing Requirements - D	irect Input I	Node (See Fig	jure 87)		
1	Pulse width, GPI		t _{w(GPI)}	2 × P <u>216</u> /		ns
2	Rise time, GPI		t _{r(GPI)}	1.0	3.9	ns
	Fall time, GPI	t _{f(GPI)}	1.0	3.0	ns	
3	Internal skew between GPI[n:0] signals	PRU0	t _{sk(GPI)}		1.0	ns
	<u>217/</u>	PRU1		3.0	ns	
PRU	-ICSS PRU Switching Requirements – Dir	ect Output N	lode (See Figu	ure 88)		
1	Pulse width, GPI		t _{w(GPO)}	2 × P <u>216</u> /		ns
2	Rise time, GPI		t _{r(GPO)}	1.0	3.9	ns
	Fall time, GPI	Fall time, GPI			3.0	ns
3	Internal skew between GPI[n:0] signals	PRU0	t _{sk(GPO)}		1.0	ns
	<u>218</u> /	PRU1			5.0	ns

DLA LAND AND MARITIME	SIZE	CODE IDENT NO.	DWG NO. V62/15602
COLUMBUS, OHIO	A	16236	
		REV A	PAGE 57

No	Test	Symbol	L	imits	Unit
			Min	Max	
	Peripheral Informatio				
	Programmable Real-Time Unit Subsystem ar		-		
	PRU-ICSS PRU Parallel Cap				
PRU	-ICSS PRU Timing Requirements - Parallel Captur	e Mode (See Figure	89 and Figure	90)	
1	Cycle time, CLOCKIN	t _{c(CLOCKIN)}	20.00		ns
2	Pulse duration, CLOCKIN low	tw(CLOCKIN_L)	10.00		ns
3	Pulse duration, CLOCKIN high	t _w (clockin_h)	10.00		ns
4	Rising time, CLOCKIN	tr(CLOCKIN)	1.00	3.00	ns
5	Falling time, CLOCKIN	t _{f(CLOCKIN)}	1.00	3.00	ns
6	Setup time, DATAIN valid before CLOCKIN	t _{su(DATAIN-CLOCKIN)}	5.00		ns
7	Hold time, DATAIN valid after CLOCK	th(CLOCKIN-DATAIN)	0.00		ns
8	Rising time, DATAIN	t _{r(DATAIN)}	1.00	3.00	ns
	Falling time, DATAIN	t _{f(DATAIN)}	1.00	3.00	ns
	7.14.1.3 PRU-ICSS PRU Shi	ft Mode Electrical D	ata and Timing		
PRU	-ICSS PRU Timing Requirements – Shift In Mode	(See Figure 91)			
1	Cycle time, DATAIN	t _{c(DATAIN)}	10.00		ns
2	Pulse width, DATAIN	tw(datain)	0.45 × P <u>216</u> /	0.55 × P <u>216</u> /	ns
3	Rising time, DATAIN	tr(DATAIN)	1.00	3.00	ns
4	Falling time, DATAIN	t _{f(DATAIN)}	1.00	3.00	ns
PRU	-ICSS PRU Switching Requirements - Shift Out Mo	ode (See Figure 92)			
1	Cycle time, CLOCKOUT	t _c (clockout)	10.00		ns
2	Pulse width, CLOCKOUT	tw(clockout)	0.45 × P 216/	0.55 × P <u>216</u> /	ns

2	Pulse width, CLOCKOUT	tw(CLOCKOUT)	0.45 × P <u>216</u> /	0.55 × P <u>216</u> /	ns
3	Rising time, CLOCKOUT	tr(CLOCKOUT)	1.00	3.00	ns
4	Falling time, CLOCKOUT	t _f (clockout)	1.00	3.00	ns
5	Delay time, CLOCKOUT to DATAOUT valid	td(CLOCKOUT-DATAOUT)	0.00	3.00	ns
6	Rising time, DATAOUT	tr(dataout)	1.00	3.00	ns
_	Falling time, DATAOUT	t _{f(DATAOUT)}	1.00	3.00	ns

DLA LAND AND MARITIME	SIZE	CODE IDENT NO.	DWG NO. V62/15602
COLUMBUS, OHIO	A	16236	
		REV A	PAGE 58

No	Test	Symbol		Limits		Uni
			Min	Тур	Max	1
	Programmable Real-Time Unit Subsyste PRU-IC	ation and Timings – m and Industrial Comm SS MII_RT and Switch	unication Sub	system(PR	U-ICSS)	
	J-ICSS MII_RT Switch Timing Conditions t Conditions					
	Input signal rise time	t _R	1 <u>218</u> /		3 <u>218</u> /	ns
	Input signal fall time	tF	1 218/		3 218/	ns
Outp	out Condition				1	
	Output load capacitance	CLOAD	3		20	pF
	J-ICSS MDIO Timing Requirements – MDIO_D	· · · · · ·	_		1	
1	Setup time, MDIO valid before MDC high	t _{su(MDIO-MDC)}	90			ns
2	Hold time, MDIO valid from MDC high		0			ns
	J-ICSS MDIO Switching Characteristics - MDI	- · ·	Í			
1	Cycle time, MDC	t _{c(MDC)}	400			ns
2	Pulse duration, MDC high	tw(MDCH)	160			ns
3	Pulse duration, MDC low	t _{w(MDCL)}	160			ns
4	Transition time, MDC	t _{t(MDC)}			5	ns
PRU	J-ICSS MDIO Switching Characteristics – MDI	O_DATA (See Figure	95)			
1	Delay time, MDC high to MDIO valid		10		390	ns

No	Test	Symbol	Limits		S		Unit
			10 Mbps		100 N	lbps	
			Min	Max	Min	Max	

Peripheral Information and Timings – Continued Programmable Real-Time Unit Subsystem and Industrial Communication Subsystem(PRU-ICSS) PRU-ICSS MII_RT and Switch

PRU-ICSS MII_RT Electrical Data and Timing

PRU-ICSS MII_RT Timing Requirements – MII_RXCLK (See Figure 96)

1	Cycle time, RX_CLK	t _{c(RX_CLK)}	399.96	400.04	39.996	40.004	ns
2	Pulse duration, RX_CLK high	t _{w(RX_CLKH)}	140	260	14	26	ns
3	Pulse duration, RX_CLK low	tw(RX_CLKL)	140	260	14	26	ns
4	Transition time, RX_CLK	tt(RX_CLK)		3		3	ns

DLA LAND AND MARITIME	SIZE	CODE IDENT NO.	DWG NO. V62/15602
COLUMBUS, OHIO	A	16236	
		REV A	PAGE 59

No	Test	Symbol		Lir	nits		Unit
		10 Mbp		Mbps	100	Mbps	
			Min	Max	Min	Max	
	Peripheral Ir	formation and Tir	nings – (Continued			
	Programmable Real-Time Unit Sul	osystem and Industri	al Commu	nication Sub	system(PR	U-ICSS)	
	P	RU-ICSS MII_RT an	d Switch				
	PRU-ICS	SS MII_RT Electrical E	Data and Ti	ming			
PRI	J-ICSS MII_RT Timing Requirements – I	MII[x]_TXCLK (See F	igure 97)				
1	Cycle time, TX_CLK	tc(TX_CLK)	399.96	400.04	39.996	40.004	ns
2	Pulse duration, TX_CLK high	tw(TX_CLKH)	140	260	14	26	ns
3	Pulse duration, TX_CLK low	tw(TX_CLKL)	140	260	14	26	ns
4	Transition time, TX_CLK	tt(TX_CLK)		3		3	ns
PRI	J-ICSS MII_RT Timing Requirements - M	/III_RXD[3:0], MII_RXI	OV, and MI	_RXER (Se	e Figure 98	5)	
	Setup time, RXD[3:0] valid before RX_CLK	$t_{su(RXD-RX_CLK)}$					
1	Setup time, RX_DV valid before RX_CLK	tsu(RX_DV-RX_CLK)	8		8		ns
	Setup time, RX_ER valid before RX_CLK	$t_{su(RX_ER-RX_CLK)}$					
	Hold time RXD[3:0] valid after RX_CLK	th(RX_CLK-RXD)					
2	Hold time RX_DV valid after RX_CLK	th(RX_CLK-RX_DV)	8		8		ns
	Hold time RX_ER valid after RX_CLK	$t_{h(RX_CLK-RX_ER)}$					
RU	ICSS MII_RT Switching Characteristics	- MII_TXD[3:0] and N	III_TXEN	(See Figure	99)		
1	Delay time, TX_CLK high to TXD[3:0] valid	td(TX_CLK-TXD)	5	25	5	25	ns
	Delay time, TX_CLK to TX_EN valid	td(TX_CLK-TX_EN)					

No	Test	Symbol	Limits		Unit
			Min	Max	

Peripheral Information and Timings – Continued Programmable Real-Time Unit Subsystem and Industrial Communication Subsystem(PRU-ICSS) PRU-ICSS Universal Asynchronous Receiver Transmitter (PRU-ICSS UART)

Timing Requirements for PRU-ICSS UART Receive (See Figure 100)

3	Pulse duration, receive start, stop, data bit	t _{w(RX)}	0.96U <u>220</u> /	1.05U <u>220</u> /	ns			
Switching Characteristics Over Recommended Operating Conditions for PRU-ICSS UART Transmit								
1	Maximum programmable baud rate	fbaud(baud)	0	12	MHz			
2	Pulse duration, transmit start, stop, data bit	t _{w(TX)}	U – 2 <u>220</u> /	U + 2 <u>220</u> /	ns			

DLA LAND AND MARITIME	SIZE	CODE IDENT NO.	DWG NO. V62/15602
COLUMBUS, OHIO	A	16236	
		REV A	PAGE 60

No	Test	Symbol	Lin	nits	Unit
				Max	
Timi	Peripheral Information and Universal Asynchronous Rece UART Electrical Da ng Requirements for UARTx (See Figure 101)	eiver Transmitt			
3	Pulse duration, receive start, stop, data bit	t _{w(RX)}	0.96U 220/	1.05U 220/	ns
Swit	ching Characteristics for UARTx Transmit (See Figur	()			
1	Maximum programmable baud rate	fbaud(baud)		3.6884	MHz
2	Pulse duration, transmit start, stop, data bit	t _{w(TX)}	U – 2 <u>220</u> /	U + 2 220/	ns
	UART IrDA Ir		• = <u>==0,</u>	<u> </u>	
UAR	T IrDA—Signaling Rate and Pulse Duration—Receive M		ure 102)		
0/11	SIGNALING RATE			JLSE DURATION	
SIR					
	2.4 Kbps		1.41	88.55	μs
	9.6 Kbps		1.41	22.13	μs
	19.2 Kbps		1.41	11.07	μs
	38.4 Kbps		1.41	5.96	μs
	57.6 Kbps		1.41	4.34	μs
	115.2 Kbps		1.41	2.23	μs
MIR					
	0.576 Mbps		297.2	518.8	ns
	1.152 Mbps		149.6	258.4	ns
FIR				T	
	4 Mbps (single pulse)		67	164	ns
	4 Mbps (double pulse)		190	289	ns
	T IrDA—Signaling Rate and Pulse Duration—Transmit	Mode			
SIR	1		1	T	1
	2.4 Kbps		78.1	78.1	μs
	9.6 Kbps		19.5	19.5	μs
	19.2 Kbps		9.75	9.75	μs
	38.4 Kbps		4.87	4.87	μs
	57.6 Kbps		3.25	3.25	μs
	115.2 Kbps		1.62	1.62	μs
MIR	0.576 Mbpp		A 4 A	440	50
	0.576 Mbps		414	419 211	ns
FIR	1.152 Mbps		206	211	ns
LIK	4 Mbps (single pulse)		123	128	ns
					115

TABLE I. Electrical performance characteristics - Continued. $\underline{1}/\underline{2}/$

DLA LAND AND MARITIME	SIZE	CODE IDENT NO.	DWG NO. V62/15602
COLUMBUS, OHIO	A	16236	
		REV A	PAGE 61

- Testing and other quality control techniques are used to the extent deemed necessary to assure product performance over the 1/ specified temperature range. Product may not necessarily be tested across the full temperature range and all parameters may not necessarily be tested. In the absence of specific parametric testing, product performance is assured by characterization and/or design.
- over recommended ranges of supply voltage and operating temperature (unless otherwise noted). <u>2</u>/
- 3/ The interfaces or signals described in this table correspond to the interfaces or signals available in multiplexing mode 0. All interfaces or signals multiplexed on the terminals described in this table have the same dc electrical characteristics.
- The input voltage thresholds for this input are not a function of VDDSHV6. The typical value corresponds to 1 cap of 10 µF and 8 caps of 10 nF.
- The typical value corresponds to 1 cap of 10 µF and 5 caps of 10 nF.
- Typical values consist of 1 cap of 10 µF and 4 caps of 10 nF.
- <u>4/</u> 5/ 6/ 7/ 8/ For more details on decoupling capacitor requirements for the mDDR(LPDDR), DDR2, DDR3, DDR3L memory interface, see Section 7.7.2.1.2.6 and Section 7.7.2.1.2.7 from manufacturer data when using mDDR(LPDDR) memory devices, Section 7.7.2.2.2.6 and Section 7.7.2.2.2.7 from manufacturer data when using DDR2 memory devices, or Section 7.7.2.3.3.6 and Section 7.7.2.3.3.7 from manufacturer data when using DDR3 or DDR3L memory devices.
- 9/ VDDS SRAM CORE BG supply powers an internal LDO for SRAM supplies. Inrush currents could cause voltage drop on the VDDS SRAM CORE BG supplies when the SRAM LDO is enabled after powering up VDDS SRAM CORE BG terminals. A 10 µF is recommended to be placed close to the terminal and routed with widest traces possible to minimize the voltage drop on VDDS SRAM CORE BG terminals.
- 10/ VDDS SRAM MPU BB supply powers an internal LDO for SRAM supplies. Inrush currents could cause voltage drop on the VDDS SRAM MPU BB supplies when the SRAM LDO is enabled after powering up VDDS SRAM MPU BB terminals. A 10 µF is recommended to be placed close to the terminal and routed with widest traces possible to minimize the voltage drop on VDDS SRAM MPU BB terminals.
- Typical values consist of 1 cap of 10 μ F and 2 caps of 10 nF. 11/
- Typical values consist of 1 cap of 10 µF and 6 caps of 10 nF. <u>12</u>/
- 13/ LDO regulator outputs should not be used as a power source for any external components.
- 14/ The CAP VDD RTC terminal operates as an input to the RTC core voltage domain when the RTC KLDO ENn terminal is high. 15/ VREFP and VREFN must be tied to ground if the internal voltage reference is used.
- 16/ This parameter is valid when the respective AIN terminal is configured to operate as a general-purpose ADC input.
- 17/ Initial accuracy, temperature drift, and aging effects should be combined when evaluating a reference clock for this requirement. 18/ Pxtal = $0.5 \text{ ESR} (2 \pi f \text{ xtal CL VDDS OSC})^2$
- 19/ Initial accuracy, temperature drift, and aging effects should be combined when evaluating a reference clock for this requirement.
- Pxtal = 0.5 ESR (2 π fxtal CL VDDS_RTC)² 20/
- <u>21</u>/ Initial accuracy, temperature drift, and aging effects should be combined when evaluating a reference clock for this requirement.
- 22/ H = Period of baud rate, 1 / programmed baud rate.
- <u>23</u>/ P = Period of PICLKOCP (interface clock).
- 24/ Except when specified otherwise.
- 25/ In gpmc wait[x], x is equal to 0 or 1.
- 26/ For single read: A = (CSRdOffTime – CSOnTime) × (TimeParaGranularity + 1) × GPMC FCLK 39/ For burst read: A=(CSRdOffTime - CSOnTime + (n - 1)×PageBurstAccessTime)×(TimeParaGranularity + 1) × GPMC FCLK 39/ For burst write: A=(CSWrOffTime - CSOnTime + (n - 1)×PageBurstAccessTime)×(TimeParaGranularity + 1) × GPMC FCLK 39/ With n being the page burst access number.
- B = ClkActivationTime × GPMC_FCLK 39/ <u>27/</u>
- 28/ For single read: C = RdCycleTime × (TimeParaGranularity + 1) × GPMC_FCLK 39/ For burst read: C = (RdCycleTime + (n - 1) × PageBurstAccessTime) × (TimeParaGranularity + 1) × GPMC_FCLK 39/For burst write: C = (WrCycleTime + (n - 1) × PageBurstAccessTime) × (TimeParaGranularity + 1) × GPMC FCLK 39/ With n being the page burst access number.
- For single read: D = (RdCycleTime AccessTime) × (TimeParaGranularity + 1) × GPMC_FCLK 39/ 29/ For burst read: D = (RdCycleTime – AccessTime) × (TimeParaGranularity + 1) × GPMC_FCLK 39/ For burst write: D = (WrCycleTime – AccessTime) × (TimeParaGranularity + 1) × GPMC FCLK 39/

DLA LAND AND MARITIME	SIZE	CODE IDENT NO.	DWG NO. V62/15602
COLUMBUS, OHIO	A	16236	
		REV A	PAGE 62

```
For single read: E = (CSRdOffTime – AccessTime) × (TimeParaGranularity + 1) × GPMC FCLK 39/
30/
      For burst read: E = (CSRdOffTime – AccessTime) × (TimeParaGranularity + 1) × GPMC_FCLK 39/
      For burst write: E = (CSWrOffTime – AccessTime) × (TimeParaGranularity + 1) × GPMC_FCLK 39/
31/
      For csn falling edge (CS activated):
      - Case GpmcFCLKDivider = 0:
        - F = 0.5 × CSExtraDelay × GPMC FCLK 39/
      - Case GpmcFCLKDivider = 1:
        - F = 0.5 × CSExtraDelay × GPMC FCLK 39/ if (ClkActivationTime and CSOnTime are odd) or (ClkActivationTime and
             CSOnTime are even)
        - F = (1 + 0.5 × CSExtraDelay) × GPMC FCLK 39/ otherwise
      - Case GpmcFCLKDivider = 2:
        - F = 0.5 × CSExtraDelay × GPMC FCLK 39/ if ((CSOnTime - ClkActivationTime) is a multiple of 3)
        - F = (1 + 0.5 × CSExtraDelay) × GPMC FCLK 39/ if ((CSOnTime - ClkActivationTime - 1) is a multiple of 3)
        - F = (2 + 0.5 × CSExtraDelay) × GPMC FCLK 39/if ((CSOnTime – ClkActivationTime – 2) is a multiple of 3)
      For ADV falling edge (ADV activated):
32/
      - Case GpmcFCLKDivider = 0:
          - G = 0.5 × ADVExtraDelay × GPMC FCLK 39/
      - Case GpmcFCLKDivider = 1:
          - G = 0.5 × ADVExtraDelay × GPMC_FCLK 39/ if (ClkActivationTime and ADVOnTime are odd) or (ClkActivationTime and
             ADVOnTime are even)
          - G = (1 + 0.5 × ADVExtraDelay) × GPMC_FCLK 39/ otherwise
      - Case GpmcFCLKDivider = 2:
          - G = 0.5 × ADVExtraDelay × GPMC FCLK 39 if ((ADVOnTime - ClkActivationTime) is a multiple of 3)
          -G = (1 + 0.5 \times ADVExtraDelay) \times GPMC_FCLK 39/ if ((ADVOnTime - ClkActivationTime - 1) is a multiple of 3) 
-G = (2 + 0.5 \times ADVExtraDelay) \times GPMC_FCLK 39/ if ((ADVOnTime - ClkActivationTime - 2) is a multiple of 3)
      For ADV rising edge (ADV deactivated) in Reading mode:
      - Case GpmcFCLKDivider = 0:
          - G = 0.5 × ADVExtraDelay × GPMC_FCLK 39/
      - Case GpmcFCLKDivider = 1:
          – G = 0.5 × ADVExtraDelay × GPMC FCLK 39/ if (ClkActivationTime and ADVRdOffTime are odd) or (ClkActivationTime
                  and ADVRdOffTime are even)
          - G = (1 + 0.5 × ADVExtraDelay) × GPMC FCLK 39/ otherwise
      - Case GpmcFCLKDivider = 2:
          - G = 0.5 × ADVExtraDelay × GPMC FCLK 39/ if ((ADVRdOffTime - ClkActivationTime) is a multiple of 3)
          - G = (1 + 0.5 × ADVExtraDelay) × GPMC FCLK 39/ if ((ADVRdOffTime - ClkActivationTime - 1) is a multiple of 3)
          - G = (2 + 0.5 × ADVExtraDelay) × GPMC FCLK 39/ if ((ADVRdOffTime - ClkActivationTime - 2) is a multiple of 3)
      For ADV rising edge (ADV deactivated) in Writing mode:
      - Case GpmcFCLKDivider = 0:
           – G = 0.5 × ADVExtraDelay × GPMC FCLK 39/
      - Case GpmcFCLKDivider = 1:
          - G = 0.5 × ADVExtraDelay × GPMC FCLK 39/ if (ClkActivationTime and ADVWrOffTime are odd) or (ClkActivationTime and
                 ADVWrOffTime are even)
          - G = (1 + 0.5 × ADVExtraDelay) × GPMC_FCLK 39/ otherwise
      - Case GpmcFCLKDivider = 2:
          - G = 0.5 × ADVExtraDelay × GPMC_FCLK 39/ if ((ADVWrOffTime - ClkActivationTime) is a multiple of 3)
          - G = (1 + 0.5 × ADVExtraDelay) × GPMC_FCLK <u>39</u>/ if ((ADVWrOffTime – ClkActivationTime – 1) is a multiple of 3)
          - G = (2 + 0.5 × ADVExtraDelay) × GPMC FCLK 39/ if (ADVWrOffTime – ClkActivationTime – 2) is a multiple of 3)
```

DLA LAND AND MARITIME	SIZE	CODE IDENT NO.	DWG NO. V62/15602
COLUMBUS, OHIO	A	16236	
		REV A	PAGE 63

33/ For OE falling edge (OE activated) and IO DIR rising edge (Data Bus input direction): - Case GpmcFCLKDivider = 0: - H = 0.5 × OEExtraDelay × GPMC FCLK 39/ - Case GpmcFCLKDivider = 1: - H = 0.5 × OEExtraDelay × GPMC FCLK 39/ if (ClkActivationTime and OEOnTime are odd) or (ClkActivationTime and OEOnTime are even) - H = (1 + 0.5 × OEExtraDelay) × GPMC FCLK 39/ otherwise - Case GpmcFCLKDivider = 2: - H = 0.5 × OEExtraDelay × GPMC_FCLK 39/ if ((OEOnTime - ClkActivationTime) is a multiple of 3) - H = (1 + 0.5 × OEExtraDelay) × GPMC FCLK 39/ if ((OEOnTime - ClkActivationTime - 1) is a multiple of 3) - H = (2 + 0.5 × OEExtraDelay) × GPMC FCLK 39/ if ((OEOnTime - ClkActivationTime - 2) is a multiple of 3) For OE rising edge (OE deactivated): - Case GpmcFCLKDivider = 0: - H = 0.5 × OEExtraDelay × GPMC FCLK 39/ - Case GpmcFCLKDivider = 1: - H = 0.5 × OEExtraDelay × GPMC_FCLK 39/if (ClkActivationTime and OEOffTime are odd) or (ClkActivationTime and OEOffTime are even) - H = (1 + 0.5 × OEExtraDelay) × GPMC_FCLK 39/ otherwise - Case GpmcFCLKDivider = 2: - H = 0.5 × OEExtraDelay × GPMC_FCLK 39/ if ((OEOffTime - ClkActivationTime) is a multiple of 3) - H = (1 + 0.5 × OEExtraDelay) × GPMC_FCLK <u>39</u>/ if ((OEOffTime – ClkActivationTime – 1) is a multiple of 3) - H = (2 + 0.5 × OEExtraDelay) × GPMC_FCLK <u>39</u>/ if ((OEOffTime - ClkActivationTime - 2) is a multiple of 3) For WE falling edge (WE activated): 34/ - Case GpmcFCLKDivider = 0: – I = 0.5 × WEExtraDelay × GPMC FCLK 39/ - Case GpmcFCLKDivider = 1: - I = 0.5 × WEExtraDelay × GPMC_FCLK 39/ if (ClkActivationTime and WEOnTime are odd) or (ClkActivationTime and WEOnTime are even) -I = (1 + 0.5 × WEExtraDelay) × GPMC FCLK 39/ otherwise - Case GpmcFCLKDivider = 2: - I = 0.5 × WEExtraDelay × GPMC FCLK 39/ if ((WEOnTime - ClkActivationTime) is a multiple of 3) - I = (1 + 0.5 × WEExtraDelay) × GPMC FCLK 39/ if ((WEOnTime - ClkActivationTime - 1) is a multiple of 3) $-I = (2 + 0.5 \times WEExtraDelay) \times GPMC_FCLK 39/ if (WEOnTime - ClkActivationTime - 2) is a multiple of 3)$ For WE rising edge (WE deactivated): - Case GpmcFCLKDivider = 0: - I = 0.5 × WEExtraDelay × GPMC FCLK 39/ - Case GpmcFCLKDivider = 1: - I = 0.5 × WEExtraDelay × GPMC FCLK 39/ if (ClkActivationTime and WEOffTime are odd) or (ClkActivationTime and WEOffTime are even) -I = (1 + 0.5 × WEExtraDelay) × GPMC FCLK 39/ otherwise - Case GpmcFCLKDivider = 2: - I = 0.5 × WEExtraDelay × GPMC FCLK 39/ if ((WEOffTime - ClkActivationTime) is a multiple of 3) - I = (1 + 0.5 × WEExtraDelay) × GPMC_FCLK 39/ if ((WEOffTime - ClkActivationTime - 1) is a multiple of 3) $-I = (2 + 0.5 \times WEExtraDelay) \times GPMC_FCLK 39/ if ((WEOffTime - ClkActivationTime - 2) is a multiple of 3)$ 35/ J = GPMC FCLK 39/ In gpmc csn[x], x is equal to 0, 1, 2, 3, 4, or 5. In gpmc wait[x], x is equal to 0 or 1. <u>36</u>/ 37/ P = apmc clk period in ns.38/ For read: K = (ADVRdOffTime – ADVOnTime) × (TimeParaGranularity + 1) × GPMC FCLK 39/ For write: K = (ADVWrOffTime – ADVOnTime) × (TimeParaGranularity + 1) × GPMC FCLK 39/ 39/ GPMC FCLK is general-purpose memory controller internal functional clock period in ns. 40/ Related to the gpmc clk output clock maximum and minimum frequencies programmable in the GPMC module by setting the GPMC CONFIG1 CSx configuration register bit field GpmcFCLKDivider. 41/ The jitter probability density can be approximated by a Gaussian function.

DLA LAND AND MARITIME	SIZE	CODE IDENT NO.	DWG NO. V62/15602
COLUMBUS, OHIO	A	16236	
		REV A	PAGE 64

- 42/ The internal parameters table must be used to calculate data access time stored in the corresponding CS register bit field.
- 43/ Internal parameters are referred to the GPMC functional internal clock which is not provided externally.
- 44/ GPMC_FCLK is general-purpose memory controller internal functional clock.
- 45/ The FA5 parameter shows the amount of time required to internally sample input data. It is expressed in number of GPMC functional clock cycles. From start of read cycle and after FA5 functional clock cycles, input data is internally sampled by active functional clock edge. FA5 value must be stored inside the AccessTime register bit field.
- 46/ The FA20 parameter shows amount of time required to internally sample successive input page data. It is expressed in number of GPMC functional clock cycles. After each access to input page data, next input page data is internally sampled by active functional clock edge after FA20 functional clock cycles. The FA20 value must be stored in the PageBurstAccessTime register bit field.
- <u>47</u>/ The FA21 parameter shows amount of time required to internally sample first input page data. It is expressed in number of GPMC functional clock cycles. From start of read cycle and after FA21 functional clock cycles, first input page data is internally sampled by active functional clock edge. FA21 value must be stored inside the AccessTime register bit field.
- 48/ P = PageBurstAccessTime × (TimeParaGranularity + 1) × GPMC FCLK 50/
- $\overline{49}$ / H = AccessTime × (TimeParaGranularity + 1) × GPMC FCLK 50/
- 50/ GPMC FCLK is general-purpose memory controller internal functional clock period in ns.
- 51/
 For single read: A = (CSRdOffTime CSOnTime) × (TimeParaGranularity + 1) × GPMC_FCLK 50/ For single write: A = (CSWrOffTime – CSOnTime) × (TimeParaGranularity + 1) × GPMC_FCLK 50/ For burst read: A = (CSRdOffTime – CSOnTime + (n – 1) × PageBurstAccessTime) × (TimeParaGranularity + 1) × GPMC_FCLK 50/ For burst write: A = (CSWrOffTime – CSOnTime + (n – 1) × PageBurstAccessTime) × (TimeParaGranularity + 1) × GPMC_FCLK 50/ For burst write: A = (CSWrOffTime – CSOnTime + (n – 1) × PageBurstAccessTime) × (TimeParaGranularity + 1) × GPMC_FCLK 50/ with n being the page burst access number
- 52/ For reading: B = ((ADVRdOffTime CSOnTime) × (TimeParaGranularity + 1) + 0.5 × (ADVExtraDelay CSExtraDelay)) × GPMC_FCLK 50/ For writing: B = ((ADVMrOffTime – CSOnTime) × (TimeParaGranularity + 1) + 0.5 × (ADVExtraDelay – CSExtraDelay)) ×
- For writing: B = ((ADVWrOffTime CSOnTime) × (TimeParaGranularity + 1) + 0.5 × (ADVExtraDelay CSExtraDelay)) × GPC_FCLK 50/
- 53/ C = ((OEOffTime CSOnTime) × (TimeParaGranularity + 1) + 0.5 × (OEExtraDelay CSExtraDelay)) × GPMC_FCLK 50/
- 54/ D = PageBurstAccessTime × (TimeParaGranularity + 1) × GPMC_FCLK 50/
- 55/ E = ((WEOnTime CSOnTime) × (TimeParaGranularity + 1) + 0.5 × (WEExtraDelay CSExtraDelay)) × GPMC_FCLK 50/
- 56/ F = ((WEOffTime CSOnTime) × (TimeParaGranularity + 1) + 0.5 × (WEExtraDelay CSExtraDelay)) × GPMC_FCLK 50/
- 57/ G = Cycle2CycleDelay × GPMC FCLK 50/
- 58/ I = ((OEOffTime + (n 1) × PageBurstAccessTime CSOnTime) × (TimeParaGranularity + 1) + 0.5 × (OEExtraDelay CSExtraDelay)) × GPMC_FCLK 50/
- 59/ J = (CSOnTime × (TimeParaGranularity + 1) + 0.5 × CSExtraDelay) × GPMC_FCLK 50/
- 60/ K = ((ADVOnTime CSOnTime) × (TimeParaGranularity + 1) + 0.5 × (ADVExtraDelay CSExtraDelay)) × GPMC_FCLK 50/
- 61/ L = ((OEOnTime CSOnTime) × (TimeParaGranularity + 1) + 0.5 × (OEExtraDelay CSExtraDelay)) × GPMC FCLK 50/
- For single read: N = RdCycleTime × (TimeParaGranularity + 1) × GPMC_FCLK 50/ For single write: N = WrCycleTime × (TimeParaGranularity + 1) × GPMC_FCLK 50/ For burst read: N = (RdCycleTime + (n – 1) × PageBurstAccessTime) × (TimeParaGranularity + 1) × GPMC_FCLK 50/ For burst write: N = (WrCycleTime + (n – 1) × PageBurstAccessTime) × (TimeParaGranularity + 1) × GPMC_FCLK 50/
- 63/ In gpmc csn[x], x is equal to 0, 1, 2, 3, 4, or 5.
- 64/ Internal parameters table must be used to calculate data access time stored in the corresponding CS register bit field.
- 65/ Internal parameters are referred to the GPMC functional internal clock which is not provided externally.
- 66/ The GNF12 parameter illustrates the amount of time required to internally sample input data. It is expressed in number of GPMC functional clock cycles. From start of the read cycle and after GNF12 functional clock cycles, input data is internally sampled by the active functional clock edge. The GNF12 value must be stored inside AccessTime register bit field.
- 67/ J = AccessTime × (TimeParaGranularity + 1) × GPMC_FCLK 50/
- 68/ A = (WEOffTime WEOnTime) × (TimeParaGranularity + 1) × GPMC_FCLK 50/
- 69/ B = ((WEOnTime CSOnTime) × (TimeParaGranularity + 1) + 0.5 × (WEExtraDelay CSExtraDelay)) × GPMC_FCLK 50/
- 70/ C = ((WEOnTime ADVOnTime) × (TimeParaGranularity + 1) + 0.5 × (WEExtraDelay ADVExtraDelay)) × GPMC_FCLK 50/
- 71/ D = (WEOnTime × (TimeParaGranularity + 1) + 0.5 × WEExtraDelay) × GPMC_FCLK 50/
- 72/ E = ((WrCycleTime WEOffTime) × (TimeParaGranularity + 1) 0.5 × WEExtraDelay) × GPMC_FCLK 50/

DLA LAND AND MARITIME	SIZE	CODE IDENT NO.	DWG NO. V62/15602
COLUMBUS, OHIO	A	16236	
		REV A	PAGE 65

- 73/ F = ((ADVWrOffTime WEOffTime) × (TimeParaGranularity + 1) + 0.5 × (ADVExtraDelay WEExtraDelay)) × GPMC FCLK 50/
- 74/ G = ((CSWrOffTime WEOffTime) × (TimeParaGranularity + 1) + 0.5 × (CSExtraDelay WEExtraDelay)) × GPMC_FCLK 50/
- 75/ H = ŴrCycleTime × (1 + TimeParaGranularity) × GPMC_FCLK 50/
- 76/ I = ((OEOnTime CSOnTime) × (TimeParaGranularity + 1) + 0.5 × (OEExtraDelay CSExtraDelay)) × GPMC FCLK 50/
- 77/ K = (OEOffTime OEOnTime) × (1 + TimeParaGranularity) × GPMC FCLK 50/
- 78/ L = RdCycleTime × (1 + TimeParaGranularity) × GPMC FCLK 50/
- 79/ M = ((CSRdOffTime OEOffTime) × (TimeParaGranularity + 1) + 0.5 × (CSExtraDelay OEExtraDelay)) × GPMC_FCLK 50/
- 80/ In gpmc_csn[x], x is equal to 0, 1, 2, 3, 4, or 5.
- 81/ If the LPDDR interface is operated with a clock frequency less than 200 MHz, lower-speed grade LPDDR devices may be used if the minimum clock period specified for the LPDDR device is less than or equal to the minimum clock period selected for the AM3358-EP LPDDR interface.
- 82/ For the LPDDR device BGA pad size, see the LPDDR device manufacturer documentation.
- 83/ A 20-10 via may be used if enough power routing resources are available. An 18-10 via allows for more flexible power routing to the AM3358-EP device.
- 84/ Zo is the nominal singled-ended impedance selected for the PCB.
- 85/ This parameter specifies the AC characteristic impedance tolerance for each segment of a PCB signal trace relative to the chosen Zo defined by the single-ended impedance parameter.
- 86/ Tighter impedance control is required to ensure flight time skew is minimal.
- 87/ LPDDR keepout region to encompass entire LPDDR routing area.
- 88/ For dimension definitions, see Figure 49.
- 89/ Measurements from center of AM3358-EP device to center of LPDDR device.
- 90/ For single-memory systems, TI recommends that Y offset be as small as possible.
- 91/ w is defined as the signal trace width.
- 92/ Non-LPDDR signals allowed within LPDDR keepout region provided they are separated from LPDDR routing layers by a ground plane.
- <u>93</u>/ These devices should be placed near the device they are bypassing, but preference should be given to the placement of the highspeed (HS) bypass capacitors
- 94/ Only used when two LPDDR devices are used.
- 95/ LxW, 10-mil units; for example, a 0402 is a 40x20-mil surface-mount capacitor.
- 96/ An additional HS bypass capacitor can share the connection vias only if it is mounted on the opposite side of the board.
- 97/ These devices should be placed as close as possible to the device being bypassed.
- 98/ Per LPDDR device.
- <u>99</u>/ Only series termination is permitted.
- 100/ Zo is the LPDDR PCB trace characteristic impedance.
- 101/ Series termination values larger than typical only recommended to address EMI issues.
- 102/ Series termination values should be uniform across net class.
- 103/ CK represents the clock net class, and ADDR_CTRL represents the address and control signal net class.
- 104/ Series terminator, if used, should be located closest to the AM3358-EP device.
- <u>105/</u> Differential impedance should be Zo x 2, where Zo is the single-ended impedance defined in Table 1 "PCB Stackup Specifications" sheet 33.
- 106/ Center-to-center spacing is allowed to fall to minimum (w) for up to 500 mils of routed length to accommodate BGA escape and routing congestion
- 107/ CACLM is the longest Manhattan distance of the CK and ADDR_CTRL net classes.
- 108/ DQS[x] represents the DQS0 and DQS1 clock net classes, and DQ[x] represents the DQ0 and DQ1 signal net classes.
- 109/ Center-to-center spacing is allowed to fall to minimum (w) for up to 500 mils of routed length to accommodate BGA escape and routing congestion.
- 110/ There is no requirement for skew matching between data bytes; that is, from net classes DQS0 and DQ0 to net classes DQS1 and DQ1.
- 111/ Signals from one DQ net class should be considered other LPDDR traces to another DQ net class.
- <u>112</u>/ DQLM is the longest Manhattan distance of each of the DQS[x] and DQ[x] net classes.

DLA LAND AND MARITIME	SIZE	CODE IDENT NO.	DWG NO. V62/15602
COLUMBUS, OHIO	A	16236	
		REV A	PAGE 66

- 113/ The JEDEC JESD79-2F specification defines the maximum clock period of 8 ns for all standard-speed bin DDR2 memory devices. Therefore, all standard-speed bin DDR2 memory devices are required to operate at 125 MHz.
- 114/ If the DDR2 interface is operated with a clock frequency less than 266 MHz, lower-speed grade DDR2 devices may be used if the minimum clock period specified for the DDR2 device is less than or equal to the minimum clock period selected for the AM3358-EP DDR2 interface.
- 115/ Higher DDR2 speed grades are supported due to inherent JEDEC DDR2 backwards compatibility.
- 116/ 92-terminal devices are also supported for legacy reasons. New designs will migrate to 84-terminal DDR2 devices. Electrically, the 92- and 84-terminal DDR2 devices are the same.
- 117/ For the DDR2 device BGA pad size, see the DDR2 device manufacturer documentation.
- 118/ A 20-10 via may be used if enough power routing resources are available. An 18-10 via allows for more flexible power routing to the AM3358-EP device.
- 119/ Zo is the nominal singled-ended impedance selected for the PCB.
- 120/ This parameter specifies the AC characteristic impedance tolerance for each segment of a PCB signal trace relative to the chosen Zo defined by the single-ended impedance parameter.
- 121/ Tighter impedance control is required to ensure flight time skew is minimal.
- 122/ DDR2 keepout region to encompass entire DDR2 routing area.
- 123/ For dimension definitions, see Figure 53.
- 124/ Measurements from center of AM3358-EP device to center of DDR2 device.
- 125/ For single-memory systems, it is recommended that Y offset be as small as possible.
- 126/ w is defined as the signal trace width.
- 127/ Non-DDR2 signals allowed within DDR2 keepout region provided they are separated from DDR2 routing layers by a ground plane.
- <u>128/</u> These devices should be placed near the device they are bypassing, but preference should be given to the placement of the high-speed(HS) bypass capacitors.
- 129/ Only used when two DDR2 devices are used.
- 130/ LxW, 10-mil units; for example, a 0402 is a 40x20-mil surface-mount capacitor.
- 131/ An additional HS bypass capacitor can share the connection vias only if it is mounted on the opposite side of the board.
- 132/ These devices should be placed as close as possible to the device being bypassed.
- 133/ Per DDR2 device.
- 134/ Only series termination is permitted.
- 135/ Series termination values larger than typical only recommended to address EMI issues.
- 136/ Series termination values should be uniform across net class.
- 137/ Zo is the DDR2 PCB trace characteristic impedance.
- 138/ No external termination resistors are allowed and ODT must be used for these net classes.
- 139/ CK represents the clock net class, and ADDR_CTRL represents the address and control signal net class.
- 140/ Series terminator, if used, should be located closest to the AM3358-EP device.
- 141/ Differential impedance should be Zo x 2, where Zo is the single-ended impedance defined in table" PCB Stackup
- Specifications" sheet 36 herein .
- <u>142</u>/ Center-to-center spacing is allowed to fall to minimum (w) for up to 500 mils of routed length to accommodate BGA escape and routing congestion.
- 143/ CACLM is the longest Manhattan distance of the CK and ADDR_CTRL net classes.
- 144/ DQS[x] represents the DQS0 and DQS1 clock net classes, and DQ[x] represents the DQ0 and DQ1 signal net classes.
- 145/ There is no requirement for skew matching between data bytes; that is, from net classes DQS0 and DQ0 to net classes DQS1 and DQ1.
- 146/ Signals from one DQ net class should be considered other DDR2 traces to another DQ net class.
- 147/ DQLM is the longest Manhattan distance of each of the DQS[x] and DQ[x] net classes.
- 148/ The JEDEC JESD209B specification only defines the maximum clock period for LPDDR333 and faster speed bin LPDDR memory devices. To determine the maximum clock period, see the respective LPDDR memory data sheet.
- 149/ The JEDEC JESD79-3F Standard defines the maximum clock period of 3.3 ns for all standard-speed bin DDR3 and DDR3L memory devices. Therefore, all standard-speed bin DDR3 and DDR3L memory devices are required to operate at 303 MHz.

DLA LAND AND MARITIME	SIZE	CODE IDENT NO.	DWG NO. V62/15602
COLUMBUS, OHIO	A	16236	
		REV A	PAGE 67

- 150/ For valid DDR3 device configurations and device counts, see manufacturer data Section 7.7.2.3.3.1, Figure 7-47 and Figures 7-49.
- 151/ For the DDR3 device BGA pad size, see the DDR3 device manufacturer documentation.
- 152/ Ground reference layers are preferred over power reference layers. Be sure to include bypass caps to accommodate reference layer return current as the trace routes switch routing layers.
- 153/ No traces should cross reference plane cuts within the DDR3 routing region. High-speed signal traces crossing reference plane cuts create large return current paths which can lead to excessive crosstalk and EMI radiation.
- 154/ Reference planes are to be directly adjacent to the signal plane to minimize the size of the return current loop.
- 155/ An 18-mil pad assumes Via Channel is the most economical BGA escape. A 20-mil pad may be used if additional layers are available for power routing. An 18-mil pad is required for minimum layer count escape.
- 156/ Zo is the nominal singled-ended impedance selected for the PCB.
- <u>157</u>/ This parameter specifies the AC characteristic impedance tolerance for each segment of a PCB signal trace relative to the chosen Zo defined by the single-ended impedance parameter.
- <u>158/</u> Tighter impedance control is required to ensure flight time skew is minimal.
- 159/ DDR3 keepout region to encompass entire DDR3 routing area.
- <u>160</u>/ For dimension definitions, see manufacturer data Figure 7-50.
- 161/ Measurements from center of AM3358-EP device to center of DDR3 device.
- <u>162</u>/ Minimizing X1 and Y improves timing margins.
- <u>163</u>/ w is defined as the signal trace width.
- 164/ Non-DDR3 signals allowed within DDR3 keepout region provided they are separated from DDR3 routing layers by a ground plane.
- <u>165/</u> These devices should be placed near the devices they are bypassing, but preference should be given to the placement of the high speed (HS) bypass capacitors and DDR3 signal routing.
- 166/ Only used when two DDR3 devices are used.
- 167/ LxW, 10-mil units; for example, a 0402 is a 40x20-mil surface-mount capacitor.
- <u>168</u>/ Closer and shorter is better.

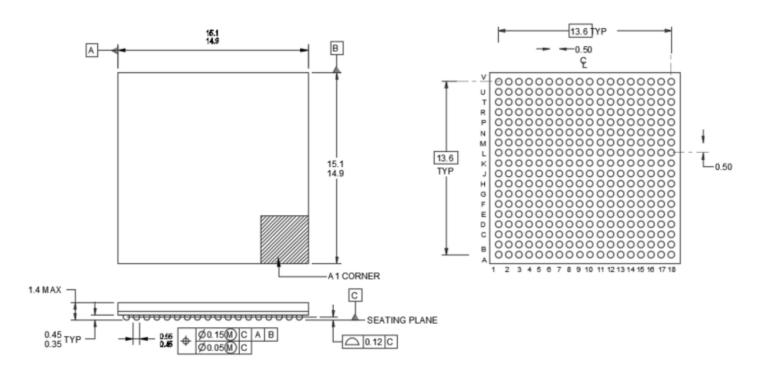
169/ Measured from the nearest AM3358-EP VDDS_DDR and ground terminal to the center of the capacitor package.

170/ Three of these capacitors should be located underneath the AM3358-EP device, between the cluster of VDDS_DDR and ground terminals, between the DDR3 interfaces on the package.

171/ Measured from the DDR3 device power and ground terminal to the center of the capacitor package.

172/ Per DDR3 device.

- 173/ An additional HS bypass capacitor can share the connection vias only if it is mounted on the opposite side of the board. No sharing of vias is permitted on the same side of the board.
- 174/ An HS bypass capacitor may share a via with a DDR3 device mounted on the same side of the PCB. A wide trace should be used for the connection and the length from the capacitor pad to the DDR3 device pad should be less than 150 mils.
- 175/ Up to a total of two pairs of DDR3 power and ground terminals may share a via.
- 176/ CK represents the clock net class, and ADDR_CTRL represents the address and control signal net class.
- 177/ The use of vias should be minimized.
- 178/ Additional bypass capacitors are required when using the VDDS_DDR plane as the reference plane to allow the return current to jump between the VDDS_DDR plane and the ground plane when the net class switches layers at a via.
- 179/ Mirrored configuration (one DDR3 device on top of the board and one DDR3 device on the bottom).
- 180/ Non-mirrored configuration (all DDR3 memories on same side of PCB).
- 181/ While this length can be increased for convenience, its length should be minimized.
- 182/ ADDR_CTRL net class only (not CK net class). Minimizing this skew is recommended, but not required.
- 183/ CK net class only.
- 184/ CACLM is the longest Manhattan distance of the CK and ADDR_CTRL net classes + 300 mils. For definition, see manufacturer data Section 7.7.2.3.6.1 and Figure 58 herein.
- 185/ Center-to-center spacing is allowed to fall to minimum (w) for up to 1250 mils of routed length.
- 186/ Signals from one DQ net class should be considered other DDR3 traces to another DQ net class.
- 187/ CK spacing set to ensure proper differential impedance. Differential impedance should be Zo x 2, where Zo is the single-ended impedance defined in manufacturer data in Table 7-60.
- 188/ Source termination (series resistor at driver) is specifically not allowed.
- 189/ Termination values should be uniform across the net class.


DLA LAND AND MARITIME	SIZE	CODE IDENT NO.	DWG NO. V62/15602
COLUMBUS, OHIO	A	16236	
		REV A	PAGE 68

- 190/ DQS[x] represents the DQS0 and DQS1 clock net classes, and DQ[x] represents the DQ0 and DQ1 signal net classes.
- 191/ External termination disallowed. Data termination should use built-in ODT functionality
- <u>192</u>/ DQLMn is the longest Manhattan distance of a byte. For definition, see manufacturer data on Section 7.7.2.3.6.2 and Figure 59
- 193/ DQLM0 is the longest Manhattan length for the DQ0 net class.
- 194/ DQLM1 is the longest Manhattan length for the DQ1 net class.
- <u>195</u>/ Length matching is only done within a byte. Length matching across bytes is not required.
- 196/ Each DQS clock net class is length matched to its associated DQ signal net class.
- <u>197</u>/ Center-to-center spacing is allowed to fall to minimum for up to 1250 mils of routed length.
- 198/ Other DDR3 trace spacing means signals that are not part of the same DQ[x] signal net class.
- <u>199</u>/ This applies to spacing within same DQ[x] signal net class.
- 200/ DQS[x] pair spacing is set to ensure proper differential impedance. Differential impedance should be Zo x 2, where Zo is the singleended impedance defined in manufacturer data in Table 7-60
- 201/ A fast-mode l²C-bus device can be used in a standard-mode l²C-bus system, but the requirement t_{su(SDA-SCLH})≥ 250 ns must then be met. This is automatically the case if the device does not stretch the LOW period of the SCL signal. If such a device stretches the LOW period of the SCL signal, it must output the next data bit to the SDA line t_{r max} + t_{su(SDA-SCLH}) = 1000 + 250 = 1250 ns (according to the standard-mode l²C-Bus Specification) before the SCL line is released.
- 202/ A device must internally provide a hold time of at least 300 ns for the SDA signal (referred to the VIHmin of the SCL signal) to bridge the undefined region of the falling edge of SCL.
- 203/ The maximum th(SDA-SCLL) has only to be met if the device does not stretch the low period [tw(SCLL)] of the SCL signal
- 204/ Except when specified otherwise.
- 205/ ACLKR internal: ACLKRCTL.CLKRM = 1, PDIR.ACLKR = 1 ACLKR external input: ACLKRCTL.CLKRM = 0, PDIR.ACLKR = 0 ACLKR external output: ACLKRCTL.CLKRM = 0, PDIR.ACLKR = 1 ACLKX internal: ACLKXCTL.CLKXM = 1, PDIR.ACLKX = 1 ACLKX external input: ACLKXCTL.CLKXM = 0, PDIR.ACLKX = 0 ACLKX external output: ACLKXCTL.CLKXM = 0, PDIR.ACLKX = 1
- <u>206</u>/ P = McASP[x]_AHCLKR and McASP[x]_AHCLKX period in nanoseconds (ns).
- 207/ R = McASP[x]_ACLKR and McASP[x]_ACLKX period in ns.
- 208/ P = SPI_CLK period.
- <u>209</u>/ This timing applies to all configurations regardless of MCSPIX_CLK polarity and which clock edges are used to drive output data and capture input data.
- 210/ Pins SPIx D0 and SPIx D1 can function as SIMO or SOMI.
- <u>211</u>/ Pins SPIx_D0 and SPIx_D1 can function as SIMO or SOMI.
- 212/ The polarity of SPIx_CLK and the active edge (rising or falling) on which mcspix_simo is driven and mcspix_somi is latched is all software configurable:

- SPIx_CLK(1) phase programmable with the bit PHA of MCSPI_CH(i)CONF register: PHA = 1 (Modes 1 and 3).

- SPIx_CLK(1) phase programmable with the bit PHA of MCSPI_CH(i)CONF register: PHA = 0 (Modes 0 and 2).
- 213/ Case P = 20.8 ns, A = (TCS + 1) × TSPICLKREF (TCS is a bit field of MCSPI_CH(i)CONF register). Case P > 20.8 ns, A = (TCS + 0.5) × Fratio × TSPICLKREF (TCS is a bit field of MCSPI_CH(i)CONF register). Note: P = SPI CLK clock period.
- 214/ B = (TCS + 0.5) × TSPICLKREF × Fratio (TCS is a bit field of MCSPI CH(i)CONF register, Fratio: Even \ge 2).
- $\overline{215}$ / P = MMC CLK period.
- <u>216</u>/ P = L3_CLK (PRU-ICSS ocp clock) period.
- <u>217</u>/ n = 16
- 218/ n = 15
- 219/ Except when specified otherwise.
- <u>220</u>/ U = UART baud time = 1/programmed baud rate.

DLA LAND AND MARITIME	SIZE	CODE IDENT NO.	DWG NO. V62/15602
COLUMBUS, OHIO	A	16236	
		REV A	PAGE 69

Case X

NOTES:

- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.
- 2. This drawing is subject to change without notice.
- 3. Final dimensions may vary due to manufacturing tolerance considerations and also routing constraints. For information, see manufacturer data number SPRAA99.
- 4. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release.

FIGURE 1. Case outline.

DLA LAND AND MARITIME	SIZE	CODE IDENT NO.	DWG NO. V62/15602
COLUMBUS, OHIO	A	16236	
		REV A	PAGE 70

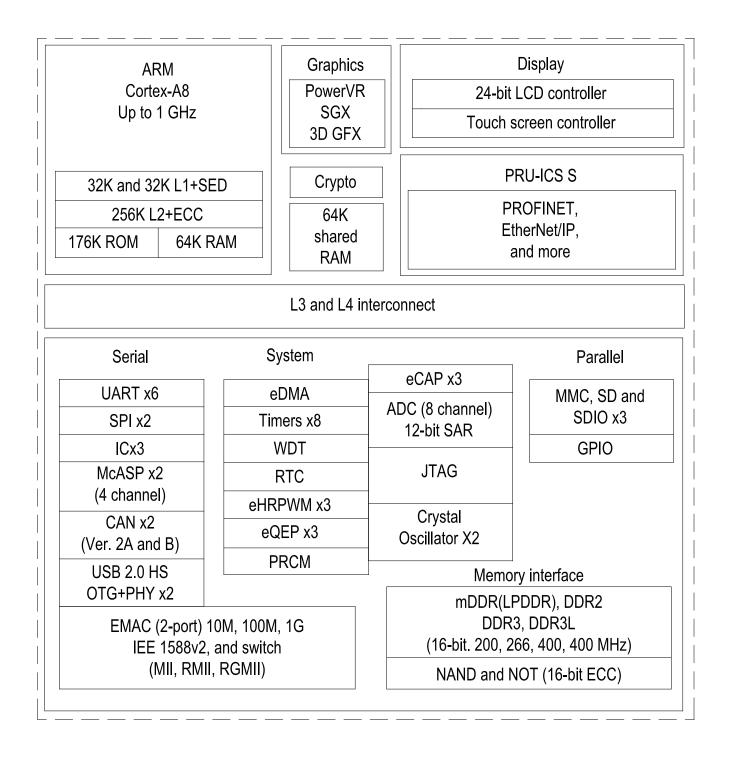


FIGURE 2. Functional block diagram.

DLA LAND AND MARITIME	SIZE	CODE IDENT NO.	DWG NO. V62/15602
COLUMBUS, OHIO	A	16236	
		REV A	PAGE 71

	A	В	С	D	E	F
18	VSS	EXTINTe	EXAPO_IN_PWMC_OUT	UARTI_CTSn	UARTO_CTSn	MMCO_DAT2
17	SPIO_SCLK	SPIO_DO	I2CO_SDA	UART1_RTSn	UARTO_RTSn	MMCO_DAT3
16	SPIO_CSD	SPIO_D1	I2C0_SCL	UART1_RXD	UARTO_TXD	USBO_DRVVBUS
15	ZDMA_EVENT_INTRO	PWRONRSTn	SPI0_CS1	UART1_TXD	UARTO_RXD	USB1_DRVVBUS
14	MCASPO_AHCLKX	EMU1	EMUO	XDMA_EVENT_INTR1	VDDS	VDDSHV6
13	MCASPO_ACLKX	MCASP0_FSX	MCASP0_FSR	MCASP0_AXR1	VDDSHV6	VDD_MPU
12	ТСК	MCASP0_ACLKR	MCASP0_ACLKR	MCASP0_AXR0	VDDSHV6	VDD_MPU
11	TDO	TDI	TMS	CAP_VDD_SRAM_MPU	VDDSHV6	VDD_MPU
10	WARMRSTn	TRSTn	CAP_VBB_MPU	VDDS_SRAM_MPU_BB	VDDSHV6	VDD_MPU
9	VREFN	VREFP	AIN7	CAP_VDD_SRAM_CORE	VDDS_SRAM_CORE_BG	VDDS
8	AIN6	AIN5	AIN4	VDDA_ADC	VSSA_ADC	VSS
7	AIN3	AIN2	AIN1	VDDS_RTC	VDDS_PLL_DRR	VDD_CORE
6	RTC_XTALIN	AINO	PMIC_POWER_EN	CAP_VDD_RTC	VDDS	VDD_CORE
5	VSS_RTC	RTC_KALDO_ENu	EXT_WAKEUP	DDR_A6	DDR_A2	DDR_A10
4	RTC_XTALOUT	RTC_KALDO_ENu	DDR_BAO	DDR_A8	DDR_A12	DDR_A0
3	RESERVED	DDR_BA2	DDR_A3	DDR_A15	DDR_A12	DDR_A0
2	VDO_MPU_MON	DDR_WEn	DDR_A4	DDR_CK	DDR_A7	DDR_A11
1	VSS	DDR_A5	DDR_A9	DDR_CKn	DDR_BA1	DDR_CASn

FIGURE 3. Pin Map Location (Section Left)

DLA LAND AND MARITIME	SIZE	CODE IDENT NO.	DWG NO. V62/15602
COLUMBUS, OHIO	A	16236	
		REV A	PAGE 72

	G	Н	J	К	L	М
18	MMCO_CMD	RMII1_REF_CLK	MII1_TXD3	MII1_TX_CLK	MII1_RX_CLK	MDC
17	MMCO_CLK	MII1_CRS	MII1_CRS	MII1_TXD0	MII1_RXD3	MDIO
16	MMCO_DATO	MII1_COL	MII1_TX_EN	MII1_TXD1	MII1_RXD2	MII1_RXD0
15	MMCO_DAT1	VDDS_PLL_MPU	MII1_RX_ER	MII1_TXD2	MII1_RXD1	USB0_CE
14	VDDSHV6	VDDSHV4	VDDSHV4	VDDSHV5	VDDSHV5	VSSA_USB
13	VDD_MPU	VDD_MPU	VDD_MPU	VDDS	VSS	VDD_CORE
12	VSS	VSS	VDD_CORE	VDD_CORE	VSS	VSS
11	VSS	VDD_CORE	VSS	VSS	VSS	VDD_CORE
10	VDD_CORE	VSS	VSS	VSS	VSS	VSS
9	VSS	VSS	VSS	VSS	VDD_CORE	VSS
8	VSS	VSS	VSS	VDD_CORE	VDD_CORE	VSS
7	VDD_CORE	VSS	VSS	VSS	VDD_CORE	VSS
6	VDD_CORE	VSS	VSS	VDD_CORE	VDD_CORE	VSS
5	VDDS_DDR	VDDS_DDR	VDDS_DDR	VDDS_DDR	VDD_CORE	VPP
4	DDR_RASn	DDR_A14	VDDS_VREF	DDR_D12	DDR_D14	DDR_D1
3	DDR_CKE	DDR_A13	VDDS_VTP	DDR_D11	DDR_D13	DDR_DO
2	DDR_RESETn	DDR_CSn0	DDR_DQM1	DDR_D10	DDR_DQSn1	DDR_DQS0
1	DDR_ODT	DDR_A1	DDR_D8	DDR_D9	DDR_DQS1	DDR_D15

FIGURE 4. Pin Map Location (Section Middle)

DLA LAND AND MARITIME	SIZE	CODE IDENT NO.	DWG NO. V62/15602
COLUMBUS, OHIO	A	16236	
		REV A	PAGE 73

	Ν	Р	R	Т	U	V
18	USBO_DM	USB1_CE	USB1_DM	USB1_VBUS	GPMC_BEn1	VSS
17	USBO_DP	USB1_ID	USB1_DP	GPMC_WAITO	GPMC_WPn	GPMC_A11
16	VDDA1P8V_USB0	USB0_ID	VDDA1P8V_USB1	GPMC_A10	GPMC_A9	GPMC_A8
15	VDDA3P3V_USB0	USB0_VBUS	VDDA3P3V_USB1	GPMC_A7	GPMC_A6	GPMC_A5
14	VSSA_USB	VDDS	GPMC_A4	GPMC_A3	GPMC_A2	GPMC_A1
13	VDD_CORE	VDDSHV3	GPMC_A0	GPMC_CSn3	GPMC_AD15	GPMC_AD14
12	VDD_CORE	VDDSHV3	GPMC_AD13	GPMC_AD12	GPMC_AD11	GPMC_CLK
11	VSS	VDDSHV2	VDDS_OSC	GPMC_AD10	XTALOUT	VSS_OSC
10	VSS	VDDSHV2	VDDS_PLL_CORE_LCD	GPMC_AD9	GPMC_AD8	XTALIN
9	VDD_CORE	VDDS	GPMC_AD6	GPMC_AD7	GPMC_CSn1	GPMC_CSn2
8	VDD_CORE	VDDSHV1	GPMC_AD2	GPMC_AD3	GPMC_AD4	GPMC_AD5
7	VSS	VDDSHV1	GPMC_ADVn_ALE	GPMC_OEn_REn	GPMC_AD0	GPMC_AD1
6	VDDS	VDDSHV6	LCD_AC_BIAS_EN	GPMC_BEn0_CLE	GPMC_WEn	GPMC_CSn0
5	VDDSHV6	VDDSHV6	LCD_HSYNC	LCD_DATA15	LCD_VSYNC	LCD_PCLK
4	DDR_D5	DDR_D7	LCD_DATA3	LCD_DATA7	LCD_DATA11	LCD_DATA14
3	DDR_D4	DDR_D6	LCD_DATA2	LCD_DATA6	LCD_DATA10	LCD_DATA13
2	DDR_D3	DDR_DQSn0	LCD_DATA1	LCD_DATA5	LCD_DATA9	LCD_DATA12
1	DDR_D2	DDR_DQS0	LCD_DATA0	LCD_DATA4	LCD_DATA8	VSS

FIGURE 5. Pin Map Location (Section Right)

DLA LAND AND MARITIME	SIZE	CODE IDENT NO.	DWG NO. V62/15602
COLUMBUS, OHIO	A	16236	
		REV A	PAGE 74

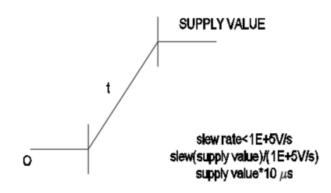
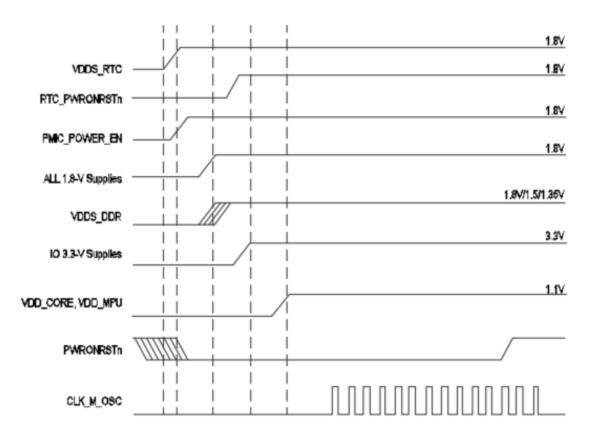
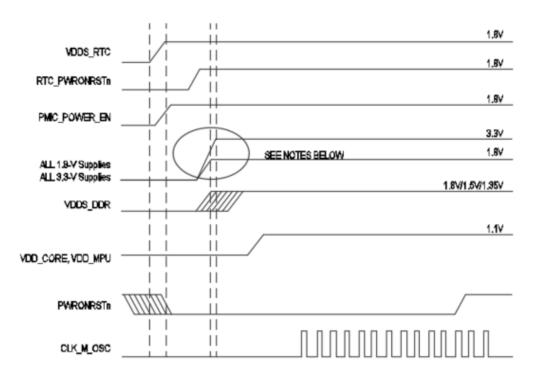
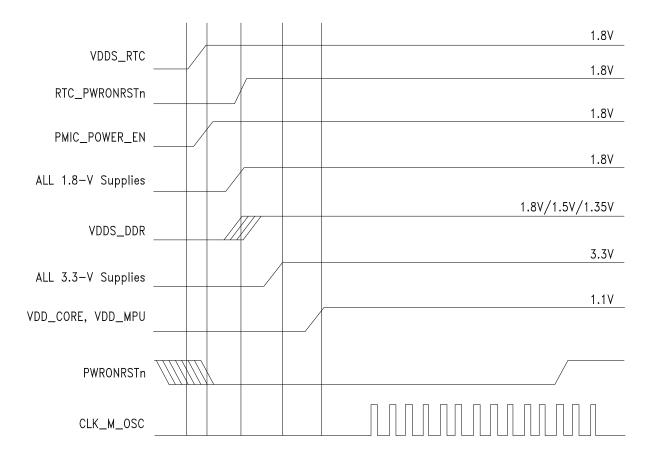



FIGURE 6. Power Supply and Slew Rate.


DLA LAND AND MARITIME	SIZE	CODE IDENT NO.	DWG NO. V62/15602
COLUMBUS, OHIO	A	16236	
		REV A	PAGE 75

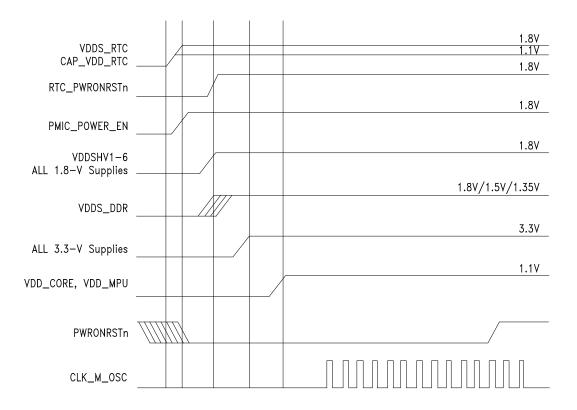
- A. RTC_PWRONRSTn should be asserted for at least 1 ms to provide enough time for the internal RTC LDO output to reach a valid level before RTC reset is released.
- B. When using the GCZ package option, VDD_MPU and VDD_CORE power inputs may be powered from the same source if the application only uses operating performance points (OPPs) that define a common power supply voltage for VDD_MPU and VDD_CORE.
- C. If a USB port is not used, the respective VDDA1P8V_USB terminal may be connected to any 1.8-V power supply and the respective VDDA3P3V_USB terminal may be connected to any 3.3-V power supply. If the system does not have a 3.3-V power supply, the VDDA3P3V_USB terminal may be connected to ground.
- D. If the system uses mDDR or DDR2 memory devices, VDDS_DDR can be ramped simultaneously with the other 1.8-V IIO power supplies.
- E. VDDS_RTC can be ramped independent of other power supplies if PMIC_POWER_EN functionality is not required. If VDDS_RTC is ramped after VDD_CORE, there might be a small amount of additional leakage current on VDD_CORE. The power sequence shown provides the lowest leakage option.
- F. To configure VDDSHVx [1-6] as 1.8 V, power up the respective VDDSHVx [1-6] to 1.8 V following the recommended sequence. To configure VDDSHVx [1-6] as 3.3 V, power up the respective VDDSHVx [1-6] to 3.3 V following the recommended sequence.

FIGURE 7. Preferred Power Supply Sequencing with Dual Voltage IOs Configured as 3.3 V.


DLA LAND AND MARITIME	SIZE	CODE IDENT NO.	DWG NO. V62/15602
COLUMBUS, OHIO	A	16236	
		REV A	PAGE 76

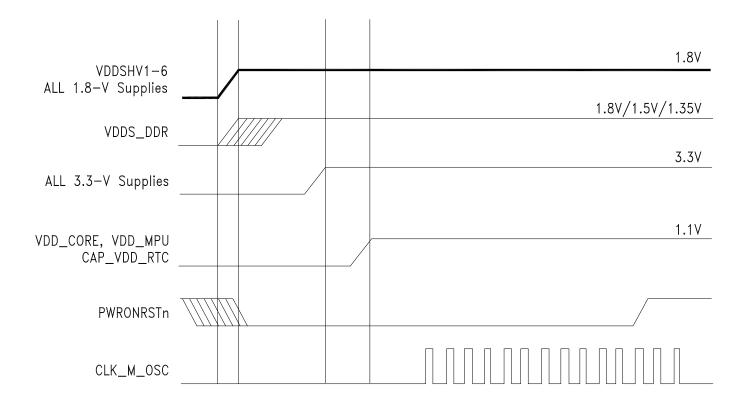
- A. RTC_PWRONRSTn should be asserted for at least 1 ms to provide enough time for the internal RTC LDO output to reach a valid level before RTC reset is released.
- B. The 3.3-V IO power supplies may be ramped simultaneously with the 1.8-V IO power supplies if the voltage sourced by any 3.3-V power supplies does not exceed the voltage sourced by any 1.8-V power supply by more than 2 V. Serious reliability issues may occur if the system power supply design allows any 3.3-V IO power supplies to exceed any 1.8-V IO power supplies by more than 2 V.
- C. When using the GCZ package option, VDD_MPU and VDD_CORE power inputs may be powered from the same source if the application only uses operating performance points (OPPs) that define a common power supply voltage for VDD_MPU and VDD_CORE.
- D. If a USB port is not used, the respective VDDA1P8V_USB terminal may be connected to any 1.8-V power supply and the respective VDDA3P3V_USB terminal may be connected to any 3.3-V power supply. If the system does not have a 3.3-V power supply, the VDDA3P3V_USB terminal may be connected to ground.
- E. If the system uses mDDR or DDR2 memory devices, VDDS_DDR can be ramped simultaneously with the other 1.8-V IO power supplies.
- F. VDDS_RTC can be ramped independent of other power supplies if PMIC_POWER_EN functionality is not required. If VDDS_RTC is ramped after VDD_CORE, there might be a small amount of additional leakage current on VDD_CORE. The power sequence shown provides the lowest leakage option.
- G. To configure VDDSHVx [1-6] as 1.8 V, power up the respective VDDSHVx [1-6] to 1.8 V following the recommended sequence. To configure VDDSHVx [1-6] as 3.3 V, power up the respective VDDSHVx [1-6] to 3.3 V following the recommended sequence.

FIGURE 8. Alternate Power-Supply Sequencing with Dual-Voltage IOs Configured as 3.3 V.


DLA LAND AND MARITIME	SIZE	CODE IDENT NO.	DWG NO. V62/15602
COLUMBUS, OHIO	A	16236	
		REV A	PAGE 77

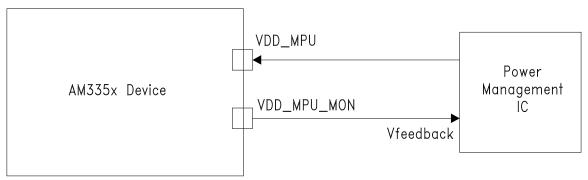
- A. RTC_PWRONRSTn should be asserted for at least 1 ms to provide enough time for the internal RTC LDO output to reach a valid level before RTC reset is released.
- B. When using the GCZ package option, VDD_MPU and VDD_CORE power inputs may be powered from the same source if the application only uses operating performance points (OPPs) that define a common power supply voltage for VDD_MPU and VDD_CORE.
- C. If a USB port is not used, the respective VDDA1P8V_USB terminal may be connected to any 1.8-V power supply and the respective VDDA3P3V_USB terminal may be connected to any 3.3-V power supply. If the system does not have a 3.3-V power supply, the VDDA3P3V_USB terminal may be connected to ground.
- D. If the system uses mDDR or DDR2 memory devices, VDDS_DDR can be ramped simultaneously with the other 1.8-V IO power supplies.
- E. VDDS_RTC can be ramped independent of other power supplies if PMIC_POWER_EN functionality is not required. If VDDS_RTC is ramped after VDD_CORE, there might be a small amount of additional leakage current on VDD_CORE. The power sequence shown provides the lowest leakage option.
- F. To configure VDDSHVx [1-6] as 1.8 V, power up the respective VDDSHVx [1-6] to 1.8 V following the recommended sequence. To configure VDDSHVx [1-6] as 3.3 V, power up the respective VDDSHVx [1-6] to 3.3 V following the recommended sequence.

FIGURE 9. Power-Supply Sequencing With Dual-Voltage IOs Configured as 1.8 V.


DLA LAND AND MARITIME	SIZE	CODE IDENT NO.	DWG NO. V62/15602
COLUMBUS, OHIO	A	16236	
		REV A	PAGE 78

- A. RTC_PWRONRSTn should be asserted for at least 1 ms to provide enough time for the internal RTC LDO output to reach a valid level before RTC reset is released.
- B. The CAP_VDD_RTC terminal operates as an input to the RTC core voltage domain when the internal RTC LDO is disabled by connecting the RTC_KALDO_ENn terminal to VDDS_RTC. If the internal RTC LDO is disabled, CAP_VDD_RTC should be sourced from an external 1.1-V power supply.
- C. When using the GCZ package option, VDD_MPU and VDD_CORE power inputs may be powered from the same source if the application only uses operating performance points (OPPs) that define a common power supply voltage for VDD_MPU and VDD_CORE.
- D. If a USB port is not used, the respective VDDA1P8V_USB terminal may be connected to any 1.8-V power supply and the respective VDDA3P3V_USB terminal may be connected to any 3.3-V power supply. If the system does not have a 3.3-V power supply, the VDDA3P3V_USB terminal may be connected to ground.
- E. If the system uses mDDR or DDR2 memory devices, VDDS_DDR can be ramped simultaneously with the other 1.8-V IO power supplies.
- F. VDDS_RTC should be ramped at the same time or before CAP_VDD_RTC, but these power inputs can be ramped independent of other power supplies if PMIC_POWER_EN functionality is not required. If CAP_VDD_RTC is ramped after VDD_CORE, there might be a small amount of additional leakage current on VDD_CORE. The power sequence shown provides the lowest leakage option.
- G. To configure VDDSHVx [1-6] as 1.8 V, power up the respective VDDSHVx [1-6] to 1.8 V following the recommended sequence. To configure VDDSHVx [1-6] as 3.3 V, power up the respective VDDSHVx [1-6] to 3.3 V following the recommended sequence.

FIGURE 10. Power-Supply Sequencing With Internal RTC LDO Disabled.


DLA LAND AND MARITIME	SIZE	CODE IDENT NO.	DWG NO. V62/15602
COLUMBUS, OHIO	A	16236	
		REV A	PAGE 79

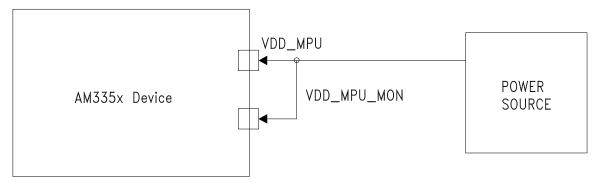
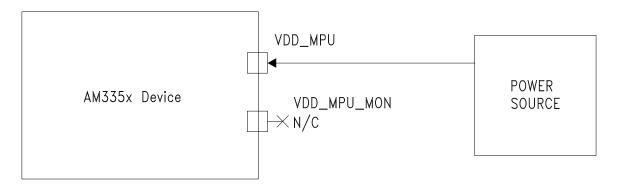
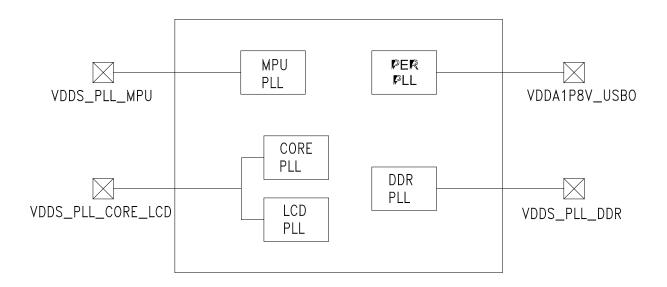
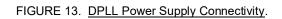

- A. CAP_VDD_RTC terminal operates as an input to the RTC core voltage domain when the internal RTC LDO is disabled by connecting the RTC_KALDO_ENn terminal to VDDS_RTC. If the internal RTC LDO is disabled, CAP_VDD_RTC should be sourced from an external 1.1-V power supply. The PMIC_POWER_EN output cannot be used when the RTC is disabled.
- B. When using the GCZ package option, VDD_MPU and VDD_CORE power inputs may be powered from the same source if the application only uses operating performance points (OPPs) that define a common power supply voltage for VDD_MPU and VDD_CORE.
- C. If a USB port is not used, the respective VDDA1P8V_USB terminal may be connected to any 1.8-V power supply and the respective VDDA3P3V_USB terminal may be connected to any 3.3-V power supply. If the system does not have a 3.3-V power supply, the VDDA3P3V_USB terminal may be connected to ground.
- D. If the system uses mDDR or DDR2 memory devices, VDDS_DDR can be ramped simultaneously with the other 1.8-V IO power supplies.
- E. VDDS_RTC should be ramped at the same time or before CAP_VDD_RTC, but these power inputs can be ramped independent of other power supplies if PMIC_POWER_EN functionality is not required. If CAP_VDD_RTC is ramped after VDD_CORE, there might be a small amount of additional leakage current on VDD_CORE. The power sequence shown provides the lowest leakage option.
- F. To configure VDDSHVx [1-6] as 1.8 V, power up the respective VDDSHVx [1-6] to 1.8 V following the recommended sequence. To configure VDDSHVx [1-6] as 3.3 V, power up the respective VDDSHVx [1-6] to 3.3 V following the recommended sequence.

FIGURE 11. Power-Supply Sequencing with RTC Feature Disabled.


DLA LAND AND MARITIME	SIZE	CODE IDENT NO.	DWG NO. V62/15602
COLUMBUS, OHIO	A	16236	
		REV A	PAGE 80

Connectioin for VDD_MPU_MON if volrage monitoring is used


Preferred connectioin for VDD_MPU_MON if nolrage monitoring is NOT used



Optional conncection or VDD_MPU_MON if voltage monitoring is NOT used

DLA LAND AND MARITIME	SIZE	CODE IDENT NO.	DWG NO. V62/15602
COLUMBUS, OHIO	A	16236	
		REV A	PAGE 81

FIGURE 12. VDD MPU MON Connectivity.

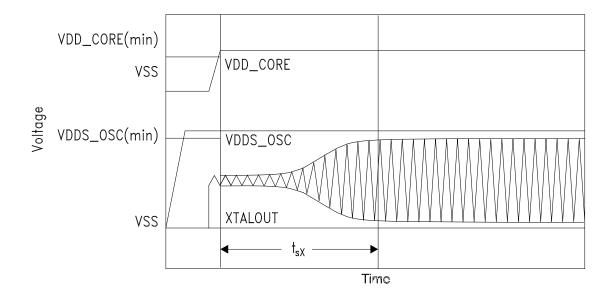
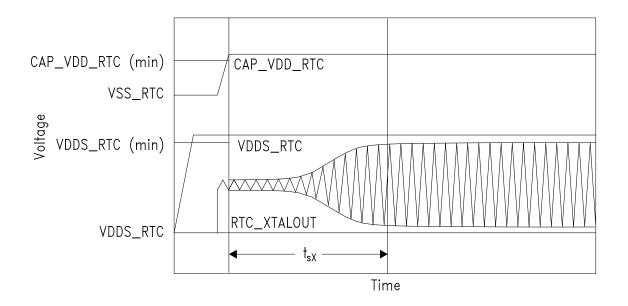
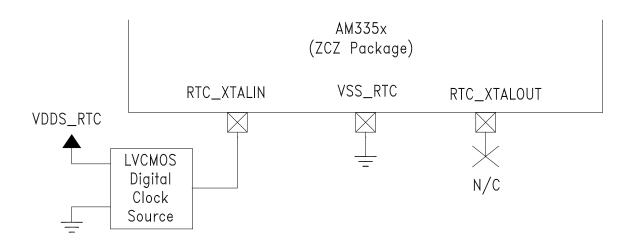




FIGURE 14. OSC0 Start-Up Time.

DLA LAND AND MARITIME	SIZE	CODE IDENT NO.	DWG NO. V62/15602
COLUMBUS, OHIO	A	16236	
		REV A	PAGE 82

DLA LAND AND MARITIME	SIZE	CODE IDENT NO.	DWG NO. V62/15602
COLUMBUS, OHIO	A	16236	
		REV A	PAGE 83

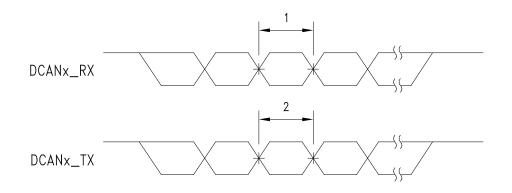
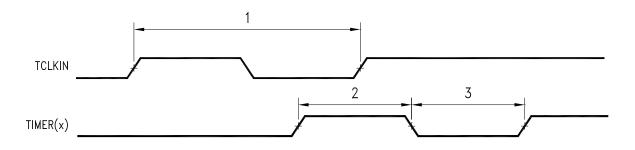
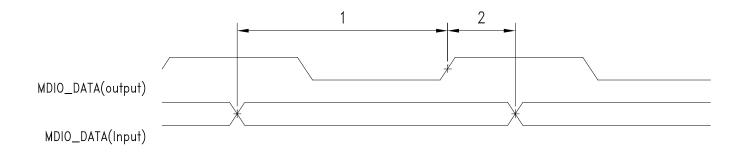
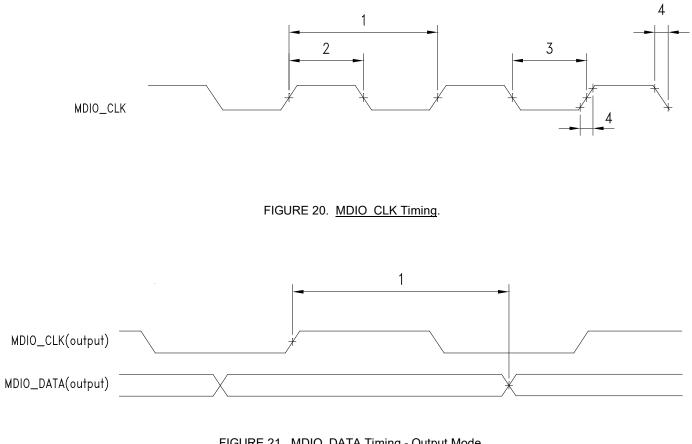




FIGURE 17. DCANx Timings.



DLA LAND AND MARITIME	SIZE	CODE IDENT NO.	DWG NO. V62/15602
COLUMBUS, OHIO	A	16236	
		REV A	PAGE 84

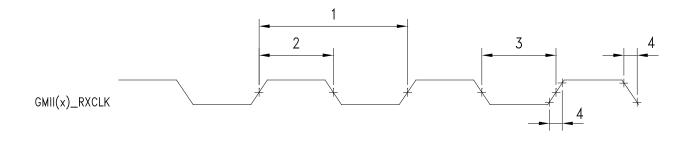


FIGURE 22. GMII[x] RXCLK Timing - MII Mode.

DLA LAND AND MARITIME	SIZE	CODE IDENT NO.	DWG NO. V62/15602
COLUMBUS, OHIO	A	16236	
		REV A	PAGE 85

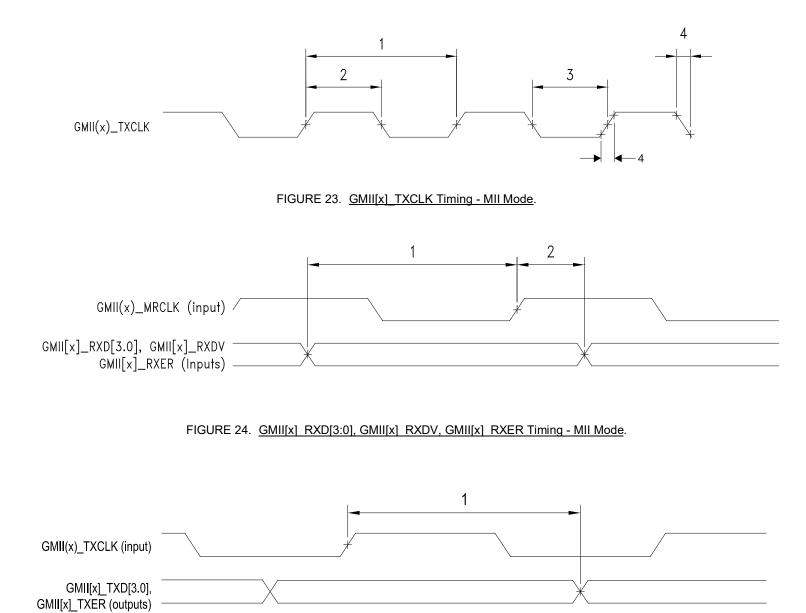
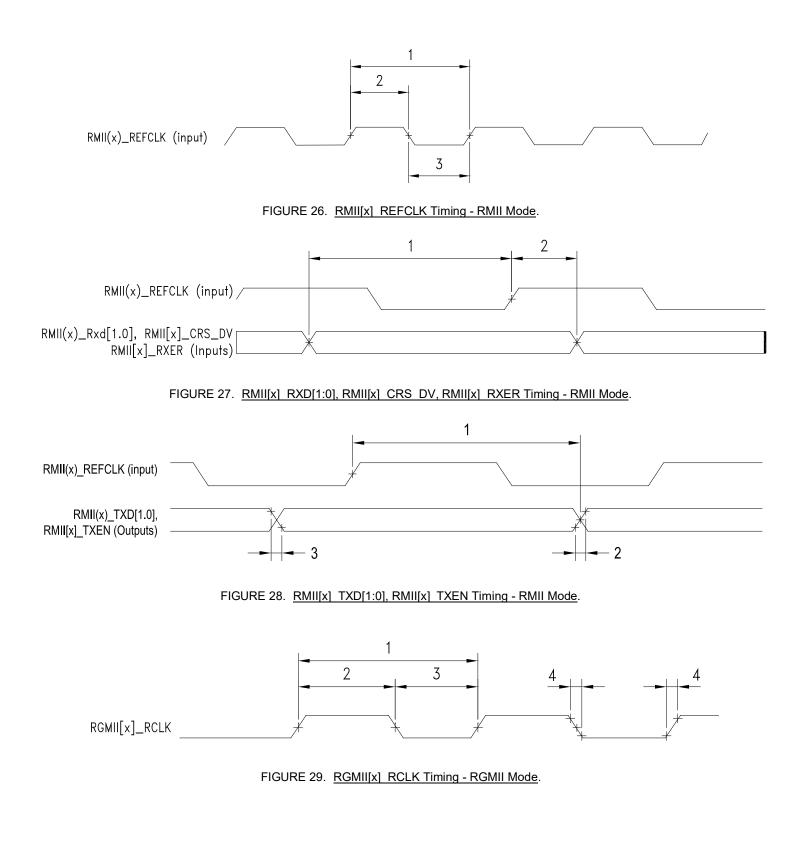
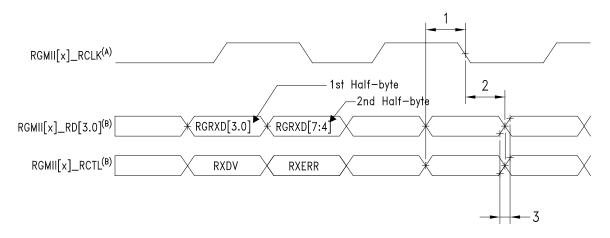




FIGURE 25. <u>GMII[x]_TXD[3:0]</u>, <u>GMII[x]_TXEN Timing - MII Mode</u>.

DLA LAND AND MARITIME	SIZE	CODE IDENT NO.	DWG NO. V62/15602
COLUMBUS, OHIO	A	16236	
		REV A	PAGE 86

DLA LAND AND MARITIME	SIZE	CODE IDENT NO.	DWG NO. V62/15602
COLUMBUS, OHIO	A	16236	
		REV A	PAGE 87

- A. RGMII[x]_RCLK must be externally delayed relative to the RGMII[x]_RD[3:0] and RGMII[x]_RCTL signals to meet the respective timing requirements.
- B. Data and control information is received using both edges of the clocks. RGMII[x]_RD[3:0] carries data bits 3-0 on the rising edge of RGMII[x]_RCLK and data bits 7-4 on the falling edge of RGMII[x]_RCLK. Similarly, RGMII[x]_RCLL carries RXDV on rising edge of RGMII[x]_RCLK and RXERR on falling edge of RGMII[x]_RCLK.

FIGURE 30. <u>RGMII[x]</u> RD[3:0], RGMII[x] RCTL Timing - RGMII Mode.

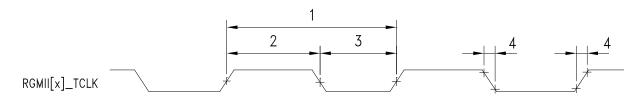
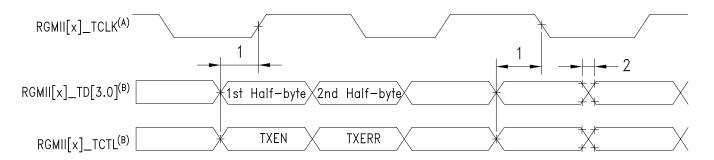
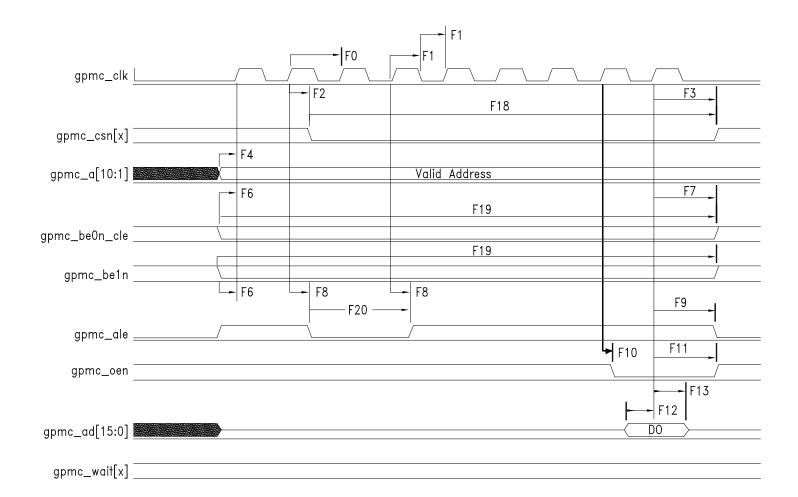



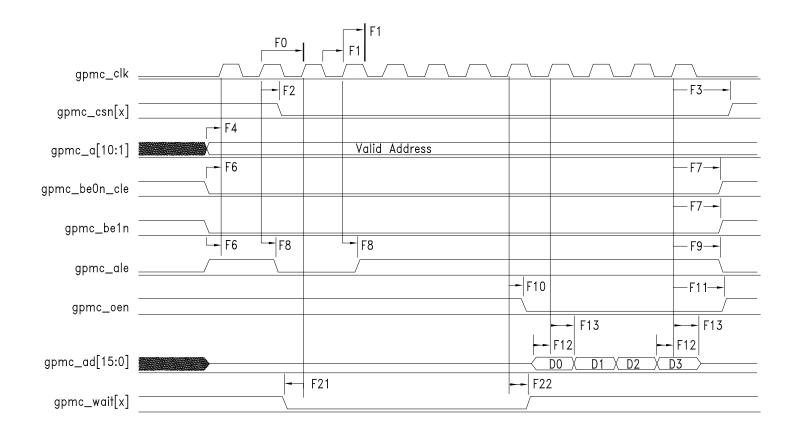
FIGURE 31. RGMII[x] TCLK Timing - RGMII Mode.



Notes:

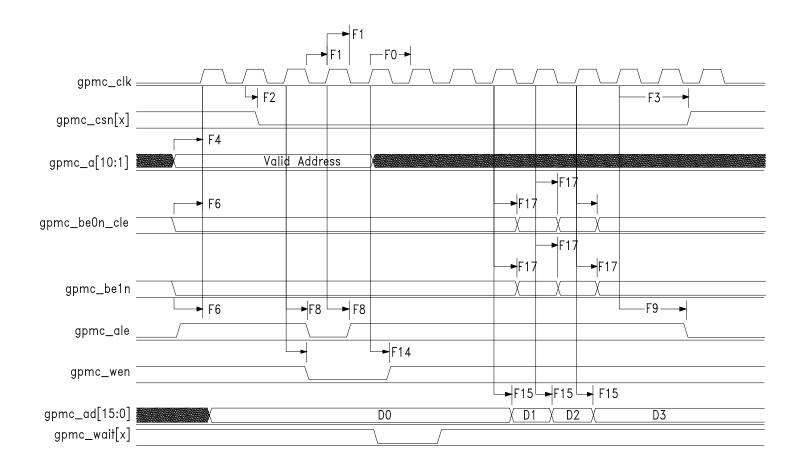
- A The EMAC and switch implemented in the AM3358-EP device supports internal delay mode, but timing closure was not performed for this mode of operation. Therefore, the AM3358-EP device does not support internal delay mode.
- B. Data and control information is transmitted using both edges of the clocks. RGMII[x]_TD[3:0] carries data bits 3-0 on the rising edge of RGMII[x]_TCLK and data bits 7-4 on the falling edge of RGMII[x]_TCLK. Similarly, RGMII[x]_TCTL carries TXEN on rising edge of RGMII[x]_TCLK and TXERR of falling edge of RGMII[x]_TCLK.

FIGURE 32. <u>RGMII[x]</u> TD[3:0], RGMII[x] TCTL Timing - RGMII Mode.


DLA LAND AND MARITIME	SIZE	CODE IDENT NO.	DWG NO. V62/15602
COLUMBUS, OHIO	A	16236	
		REV A	PAGE 88

- A. In gpmc_csn[x], x is equal to 0, 1, 2, 3, 4, or 5.
- B. In gpmc_wait[x], x is equal to 0 or 1.

FIGURE 33. GPMC and NOR Flash—Synchronous Single Read—(GpmcFCLKDivider = 0).


DLA LAND AND MARITIME	SIZE	CODE IDENT NO.	DWG NO. V62/15602
COLUMBUS, OHIO	A	16236	
		REV A	PAGE 89

- A. In gpmc_csn[x], x is equal to 0, 1, 2, 3, 4, or 5.
- B. In gpmc_wait[x], x is equal to 0 or 1.

FIGURE 34. GPMC and NOR Flash—Synchronous Burst Read—4x16-bit (GpmcFCLKDivider = 0).

DLA LAND AND MARITIME	SIZE	CODE IDENT NO.	DWG NO. V62/15602
COLUMBUS, OHIO	A	16236	
		REV A	PAGE 90

- A. In gpmc_csn[x], x is equal to 0, 1, 2, 3, 4, or 5.
- B. In gpmc_wait[x], x is equal to 0 or 1.

FIGURE 35. <u>GPMC and NOR Flash—Synchronous Burst Write—(GpmcFCLKDivider > 0)</u>.

DLA LAND AND MARITIME	SIZE	CODE IDENT NO.	DWG NO. V62/15602
COLUMBUS, OHIO	A	16236	
		REV A	PAGE 91

				⊫F0	F1 → F1	
gpmc_clk						<u> </u>
r 1	F2					— F3 —
gpmc_csn[x]						/
	F6					—F7 — ►
gpmc_be0n_cle				Valid		/
	F6					— F7 - •
gpmc_be1n				Valid		
	⊢ F4					
gpmc_a[27:17]				Address (MSB)		
				-	⊷ F12	
	⊢ F4			→ F5	F13 -	F12
gpmc_ad[15:0]	Address (LSB)			$ \longrightarrow $	DO (D1 (D2 (D3
	/	− F 8	F8			— F9 —
gpmc_ale	/	\	/			
				└ → F10		└──F11 ─ ►
gpmc_oen						
gpmc_wait[x]						

FIGURE 36. GPMC and Multiplexed NOR Flash—Synchronous Burst Read.

DLA LAND AND MARITIME	SIZE	CODE IDENT NO.	DWG NO. V62/15602
COLUMBUS, OHIO	A	16236	
		REV A	PAGE 92

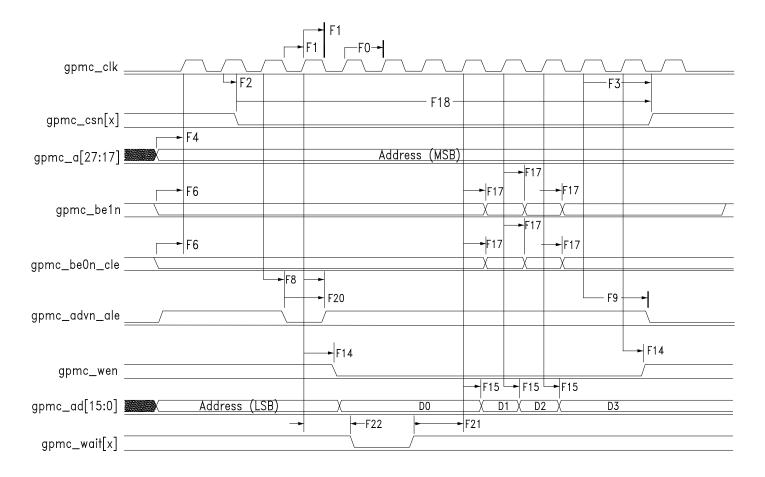
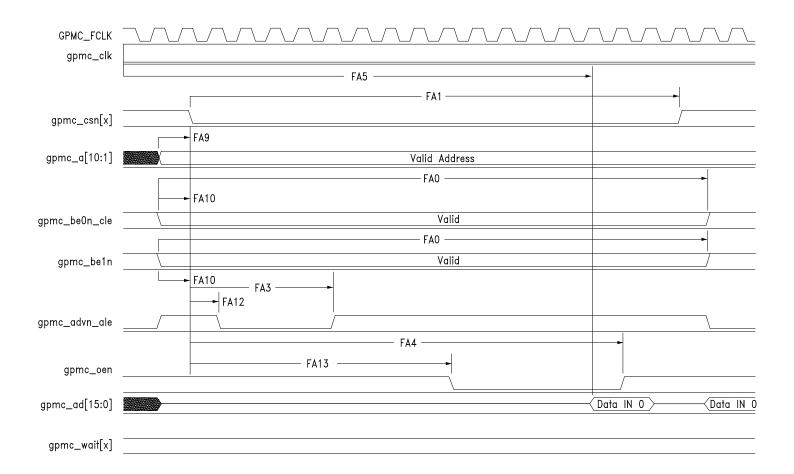
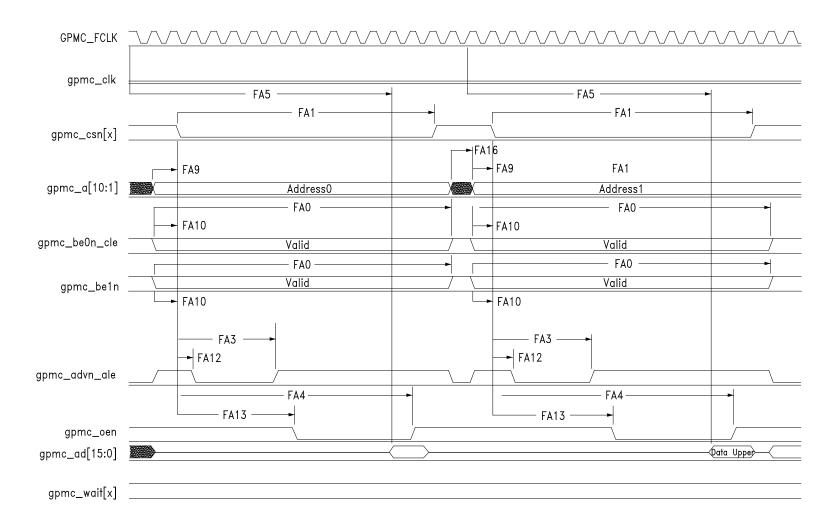



FIGURE 37. GPMC and Multiplexed NOR Flash—Synchronous Burst Write.


DLA LAND AND MARITIME	SIZE	CODE IDENT NO.	DWG NO. V62/15602
COLUMBUS, OHIO	A	16236	
		REV A	PAGE 93

- A. In gpmc_csn[x], x is equal to 0, 1, 2, 3, 4, or 5. In gpmc_wait[x], x is equal to 0 or 1.
- B. FA5 parameter illustrates amount of time required to internally sample input data. It is expressed in number of GPMC functional clock cycles. From start of read cycle and after FA5 functional clock cycles, input data will be internally sampled by active functional clock edge. FA5 value must be stored inside AccessTime register bits field.
- C. GPMC_FCLK is an internal clock (GPMC functional clock) not provided externally.

FIGURE 38. GPMC and NOR Flash—Asynchronous Read—Single Word.

DLA LAND AND MARITIME	SIZE	CODE IDENT NO.	DWG NO. V62/15602
COLUMBUS, OHIO	A	16236	
		REV A	PAGE 94

- A. In gpmc_csn[x], x is equal to 0, 1, 2, 3, 4, or 5. In gpmc_wait[x], x is equal to 0 or 1.
- B. FA5 parameter illustrates amount of time required to internally sample input data. It is expressed in number of GPMC functional clock cycles. From start of read cycle and after FA5 functional clock cycles, input data will be internally sampled by active functional clock edge. FA5 value must be stored inside AccessTime register bits field.
- C. GPMC_FCLK is an internal clock (GPMC functional clock) not provided externally.

FIGURE 39. GPMC and NOR Flash—Asynchronous Read—32-bit.

DLA LAND AND MARITIME	SIZE	CODE IDENT NO.	DWG NO. V62/15602
COLUMBUS, OHIO	A	16236	
		REV A	PAGE 95

GPMC_FCLK					
gpmc_clk					
gpine_ork	FA21	-FA20-	-FA20	FA20►	
	FA1				
gpmc_csn[x]					
	FA9				
gpmc_a[10:1]	Add0	Add1	Add2	Add3	Add4
	FA10				
gpmc_be0n_cle					/
	FA10				
gpmc_be1n					
gpmc_advn_ale	→ FA10				
3pino_ddin_dio	FA18				►
	FA13				
gpmc_oen			ļ		
gpmc_ad[15:0]		<u></u>	<u></u>	<u>D2</u>	<u>D3</u> <u>D3</u>
gpmc_wait[x]					

- A. In gpmc_csn[x], x is equal to 0, 1, 2, 3, 4, or 5. In gpmc_wait[x], x is equal to 0 or 1.
- B. FA21 parameter illustrates amount of time required to internally sample first input page data. It is expressed in number of GPMC functional clock cycles. From start of read cycle and after FA21 functional clock cycles, first input page data will be internally sampled by active functional clock edge. FA21 calculation must be stored inside AccessTime register bits field.
- C. FA20 parameter illustrates amount of time required to internally sample successive input page data. It is expressed in number of GPMC functional clock cycles. After each access to input page data, next input page data will be internally sampled by active functional clock edge after FA20 functional clock cycles. FA20 is also the duration of address phases for successive input page data (excluding first input page data). FA20 value must be stored in PageBurstAccessTime register bits field.
- D. GPMC_FCLK is an internal clock (GPMC functional clock) not provided externally.

FIGURE 40. GPMC and NOR Flash—Asynchronous Read—Page Mode 4x16-bit.

DLA LAND AND MARITIME	SIZE	CODE IDENT NO.	DWG NO. V62/15602
COLUMBUS, OHIO	A	16236	
		REV A	PAGE 96

gpmc_fclk	
gpmc_clk	
gpmc_csn[x]	► FA1
gpmc_a[10:1]	
	FA0
gpmc_be0n_cle	FA0
gpmc_be1n	
	FA12
gpmc_advn_ale	FA27
gpmc_wen	FA25
gpmc_ad[15:0]	
gpmc_wait[x]	

A. In gpmc_csn[x], x is equal to 0, 1, 2, 3, 4, or 5. In gpmc_wait[x], x is equal to 0 or 1.

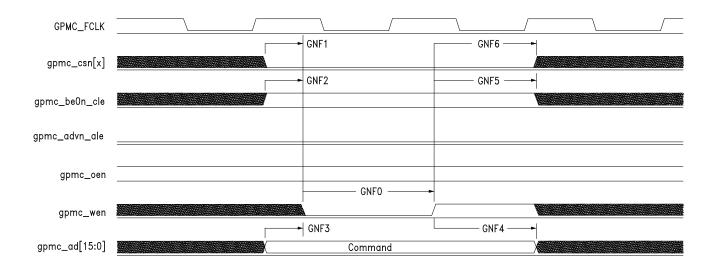
FIGURE 41. GPMC and NOR Flash—Asynchronous Write—Single Word.

DLA LAND AND MARITIME	SIZE	CODE IDENT NO.	DWG NO. V62/15602
COLUMBUS, OHIO	A	16236	
		REV A	PAGE 97

gpmc_fclk		
gpmc_clk		
	FA1	
	FA5	
gpmc_csn[x]		
gpmc_csn[x]		/
	FA9	
gpmc_a[27:17]	Address (MSB)	
	FA0	
	→ FA10	
gpmc_be0n_cle	Valid	
gpine_beon_cle	FA0	
	FA10	
gpmc_be1n	Valid	/
	FA12	
gpmc_advn_ale		
	FA4	
	───── FA13 ────►	
gpmc_oen		
	► FA29 ► FA37	
		Data IN
gpmc_ad[15:0]		
gpmc_wait[x]		

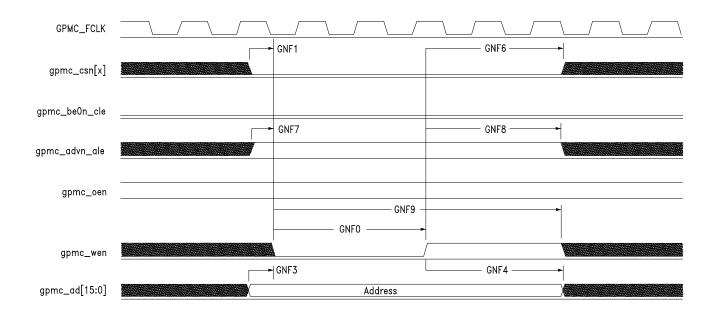
- A. In gpmc_csn[x], x is equal to 0, 1, 2, 3, 4, or 5. In gpmc_wait[x], x is equal to 0 or 1.
 B. FA5 parameter illustrates amount of time required to internally sample input data. It is expressed in number of GPMC functional clock cycles. From start of read cycle and after FA5 functional clock cycles, input data will be internally sampled by active functional clock edge. FA5 value must be stored inside AccessTime register bits field.
- C. GPMC_FCLK is an internal clock (GPMC functional clock) not provided externally.

FIGURE 42. GPMC and Multiplexed NOR Flash—Asynchronous Read—Single Word.


DLA LAND AND MARITIME	SIZE	CODE IDENT NO.	DWG NO. V62/15602
COLUMBUS, OHIO	A	16236	
		REV A	PAGE 98

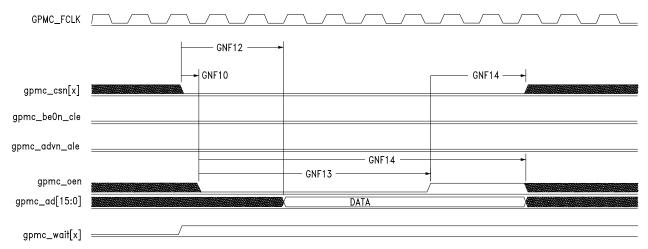
gpmc_fclk	
gpmc_clk	
gpmc_csn[x]	FA1
gpmc_a[27:17]	FA9 Address (MSB)
	FA0
gpmc_be0n_cle	FA10
	FA0
gpmc_be1n	
gpmc_advn_ale	FA3
	FA27
gpmc_wen	
gpmc_ad[15:0]	FA29 FA28 Valid Address (LSB) X Data OUT
gpmc_wait[x]	

A. In $gpmc_csn[x]$, x is equal to 0, 1, 2, 3, 4, or 5. In $gpmc_wait[x]$, x is equal to 0 or 1.


FIGURE 43. GPMC and Multiplexed NOR Flash—Asynchronous Write—Single Word.

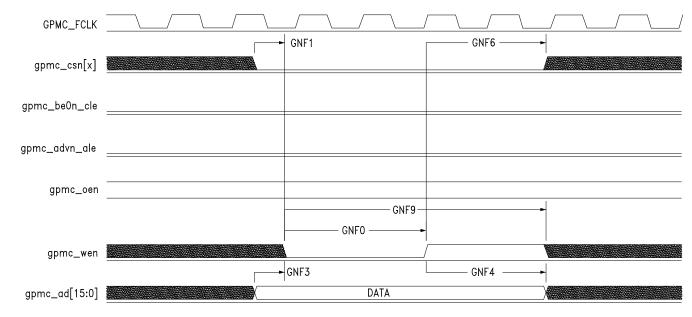
DLA LAND AND MARITIME	SIZE	CODE IDENT NO.	DWG NO. V62/15602
COLUMBUS, OHIO	A	16236	
		REV A	PAGE 99

A. In gpmc_csn[x], x is equal to 0, 1, 2, 3, 4, or 5..



Notes:

A. In gpmc_csn[x], x is equal to 0, 1, 2, 3, 4, or 5..


FIGURE 45. GPMC and NAND Flash—Address Latch Cycle.

DLA LAND AND MARITIME	SIZE	CODE IDENT NO.	DWG NO. V62/15602
COLUMBUS, OHIO	A	16236	
		REV A	PAGE 100

- A. GNF12 parameter illustrates amount of time required to internally sample input data. It is expressed in number of GPMC functional clock cycles. From start of read cycle and after GNF12 functional clock cycles, input data will be internally sampled by active functional clock edge. GNF12 value must be stored inside AccessTime register bits field.
- B. GPMC_FCLK is an internal clock (GPMC functional clock) not provided externally.
- C. In gpmc_csn[x], x is equal to 0, 1, 2, 3, 4, or 5. In gpmc_wait[x], x is equal to 0 or 1.

FIGURE 46. GPMC and NAND Flash—Data Read Cycle.

Notes:

A. In gpmc_csn[x], x is equal to 0, 1, 2, 3, 4, or 5..

FIGURE 47. GPMC and NAND Flash— Data Write Cycle.

DLA LAND AND MARITIME	SIZE	CODE IDENT NO.	DWG NO. V62/15602
COLUMBUS, OHIO	A	16236	
		REV A	PAGE 101

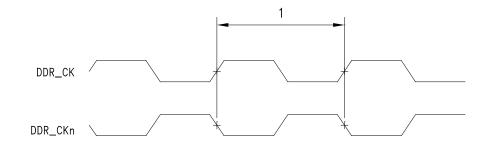


FIGURE 48. LPDDR Memory Interface Clock Timing.

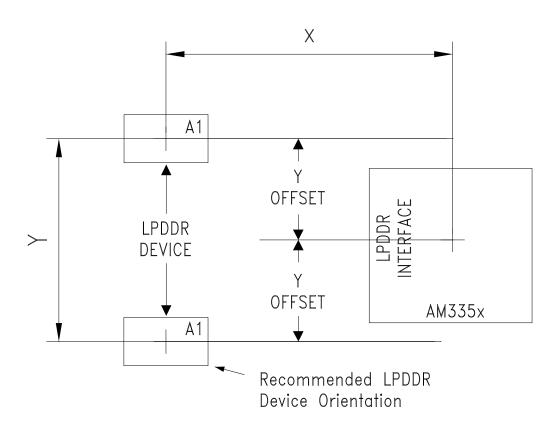


FIGURE 49. AM3358-EP Device and LPDDR Device Placement.

DLA LAND AND MARITIME	SIZE	CODE IDENT NO.	DWG NO. V62/15602
COLUMBUS, OHIO	A	16236	
		REV A	PAGE 102

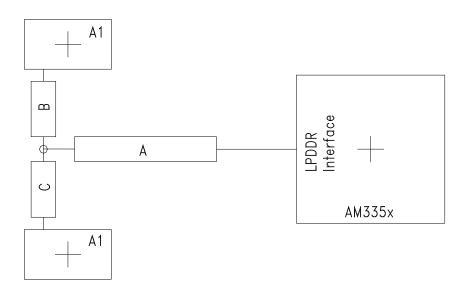


FIGURE 50. CK and ADDR_CTRL Routing and Topology.

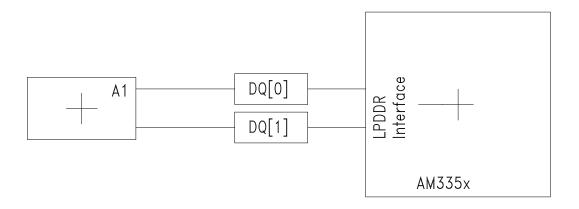


FIGURE 51. <u>DQS[x] and DQ[x] Routing and Topology</u>.

DLA LAND AND MARITIME	SIZE	CODE IDENT NO.	DWG NO. V62/15602
COLUMBUS, OHIO	A	16236	
		REV A	PAGE 103

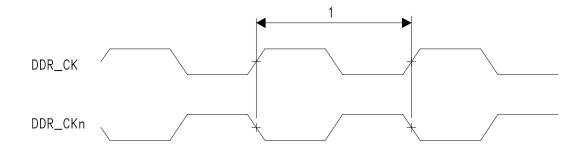


FIGURE 52. DDR2 Memory Interface Clock Timing.

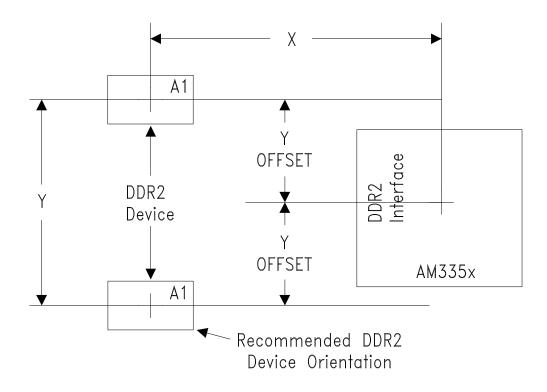


FIGURE 53. AM3358-EP Device and DDR2 Device Placement.

DLA LAND AND MARITIME	SIZE	CODE IDENT NO.	DWG NO. V62/15602
COLUMBUS, OHIO	A	16236	
		REV A	PAGE 104

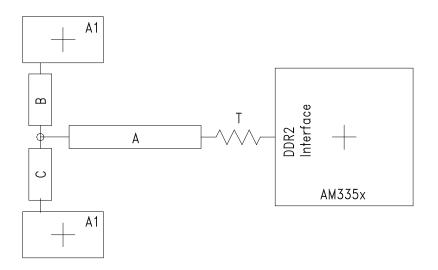
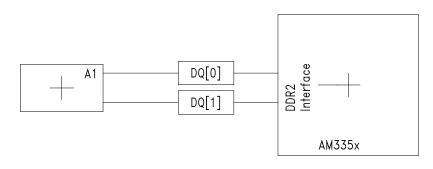
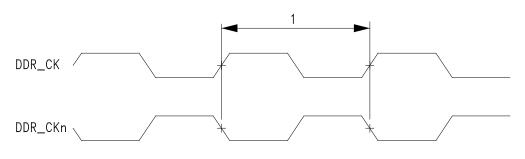
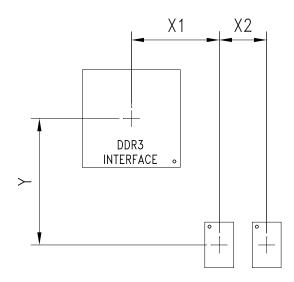
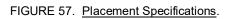
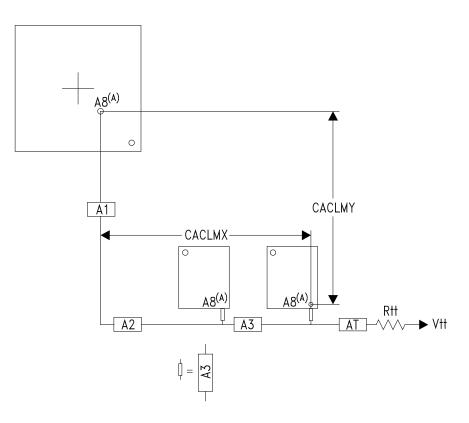
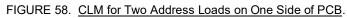


FIGURE 54. CK and ADDR CTRL Routing and Topology.

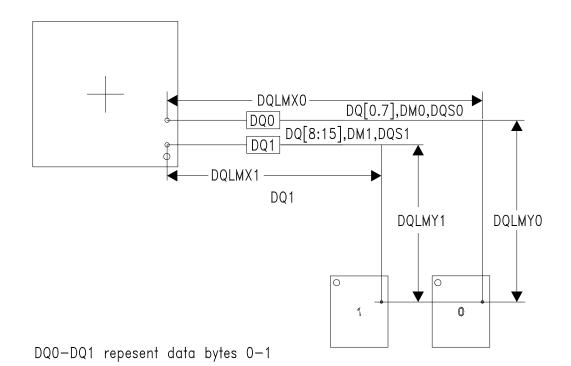




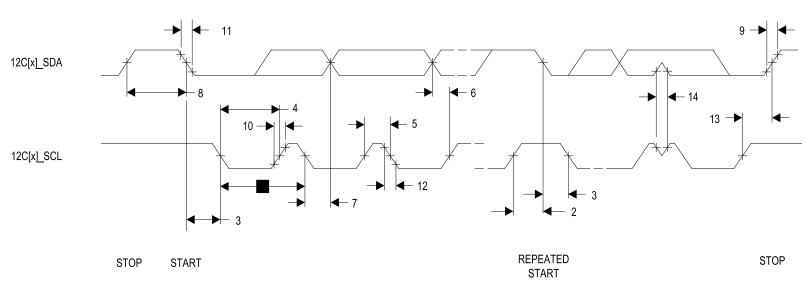

FIGURE 55. DQS[x] and DQ[x] Routing and Topology.



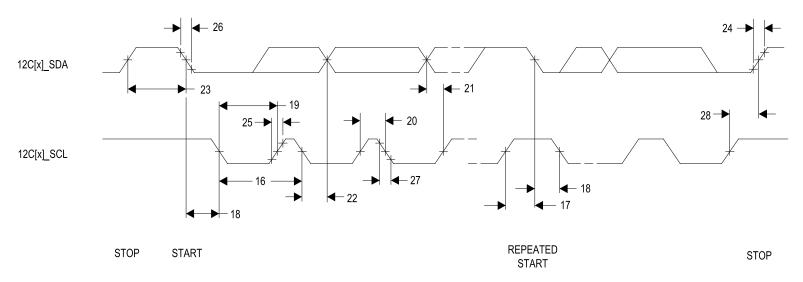

FIGURE 56.	DDR3 Memory	/ Interface	Clock	Timing.

DLA LAND AND MARITIME	SIZE	CODE IDENT NO.	DWG NO. V62/15602
COLUMBUS, OHIO	A	16236	
		REV A	PAGE 105





DLA LAND AND MARITIME	SIZE	CODE IDENT NO.	DWG NO. V62/15602
COLUMBUS, OHIO	A	16236	
		REV A	PAGE 106


There are two DQLMs, one for each byte (16-bit interface). Each DQLM is the longest Manhattan distance of the byte; therefore: DQLM0 = DQLMX0 + DQLMY0 DQLM1 = DQLMX1 + DQLMY1

DLA LAND AND MARITIME	SIZE	CODE IDENT NO.	DWG NO. V62/15602
COLUMBUS, OHIO	A	16236	
		REV A	PAGE 107

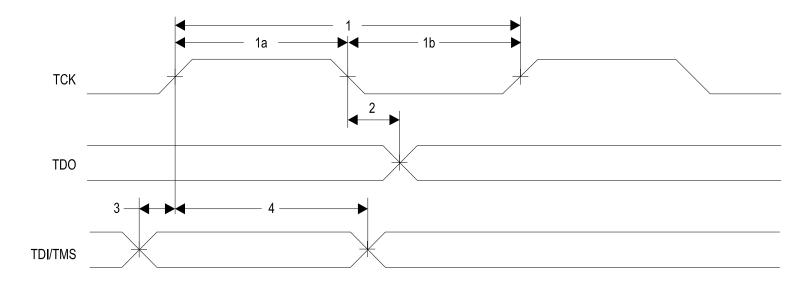
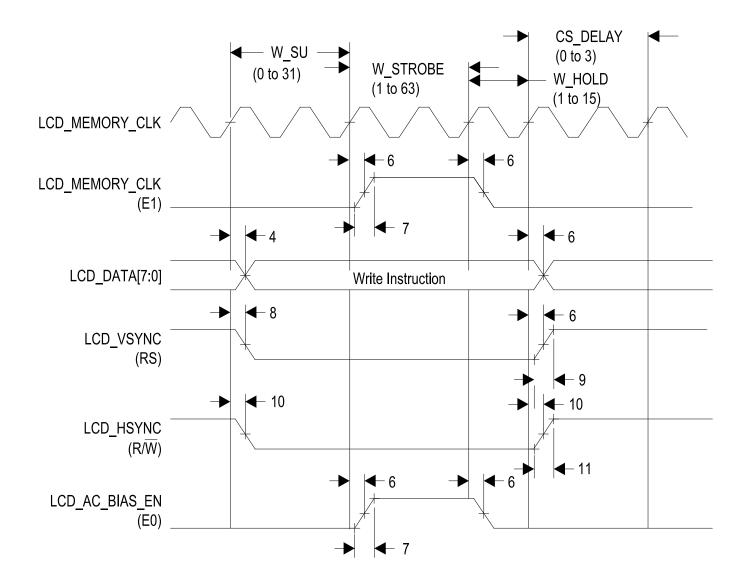
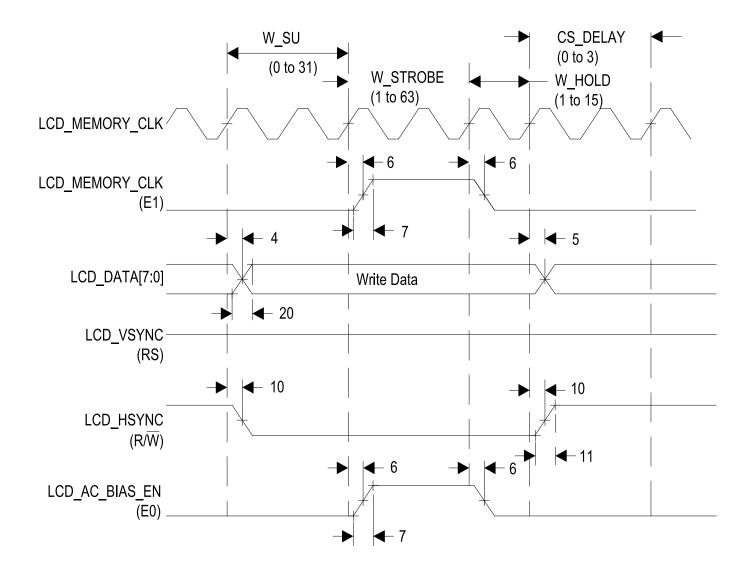
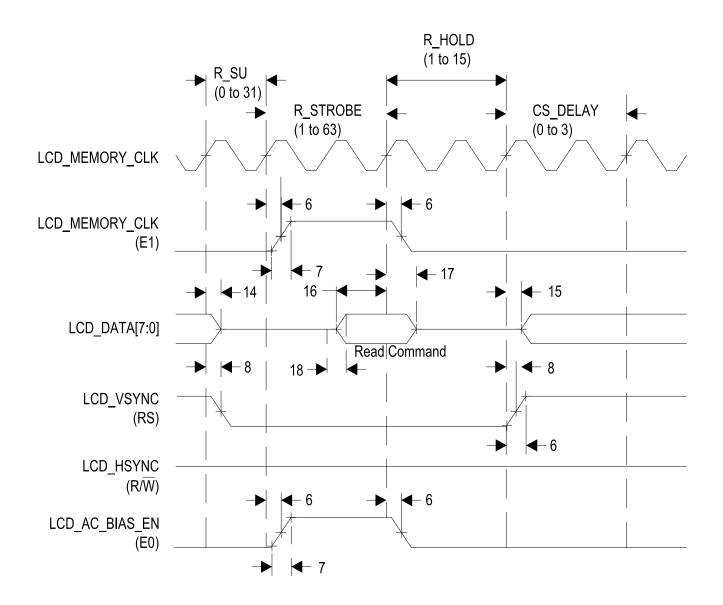



FIGURE 62. JTAG Timing.


DLA LAND AND MARITIME	SIZE	CODE IDENT NO.	DWG NO. V62/15602
COLUMBUS, OHIO	A	16236	
		REV A	PAGE 108

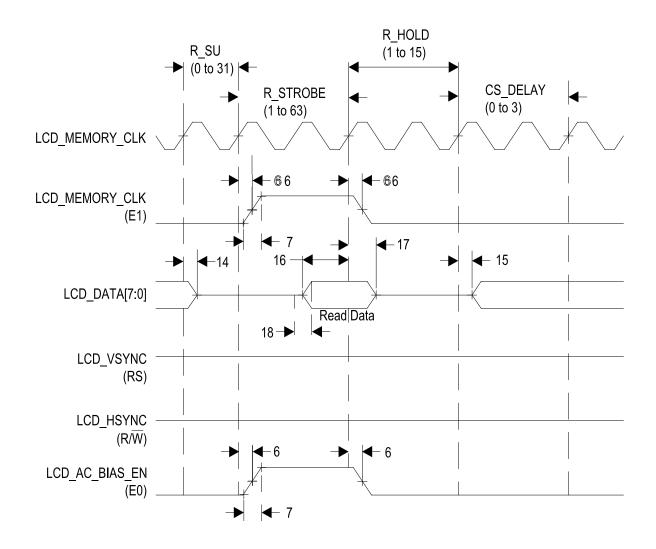
A. Hitachi mode performs asynchronous operations that do not require an external LCD_MEMORY_CLK. The first LCD_MEMORY_CLK waveform is only shown as a reference of the internal clock that sequences the other signals. The second LCD_MEMORY_CLK waveform is shown as E1 since the LCD_MEMORY_CLK signal is used to implement the E1 function in Hitachi mode.

FIGURE 63. Command Write in Hitachi Mode.


DLA LAND AND MARITIME	SIZE	CODE IDENT NO.	DWG NO. V62/15602
COLUMBUS, OHIO	A	16236	
		REV A	PAGE 109

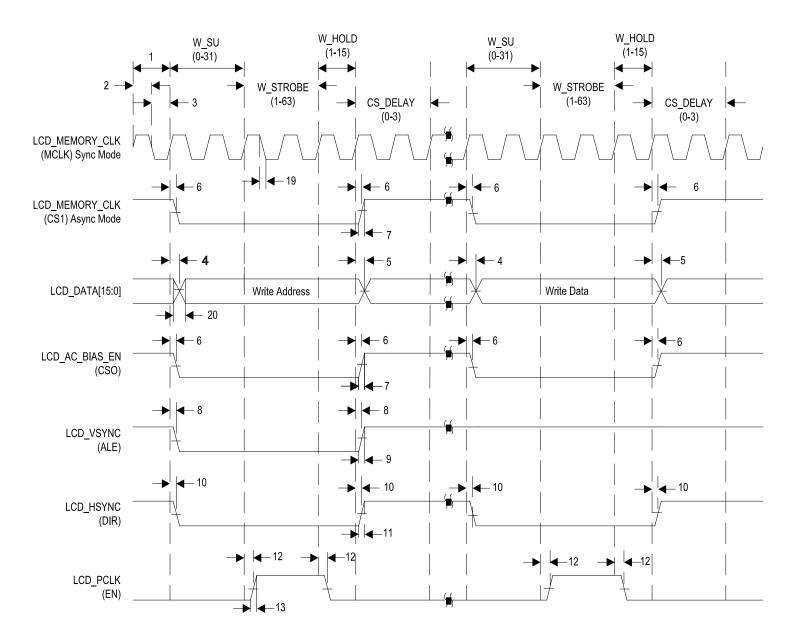
A. Hitachi mode performs asynchronous operations that do not require an external LCD_MEMORY_CLK. The first LCD_MEMORY_CLK waveform is only shown as a reference of the internal clock that sequences the other signals. The second LCD_MEMORY_CLK waveform is shown as E1 since the LCD_MEMORY_CLK signal is used to implement the E1 function in Hitachi mode.

FIGURE 64. Data Write in Hitachi Mode.


DLA LAND AND MARITIME	SIZE	CODE IDENT NO.	DWG NO. V62/15602
COLUMBUS, OHIO	A	16236	
		REV A	PAGE 110

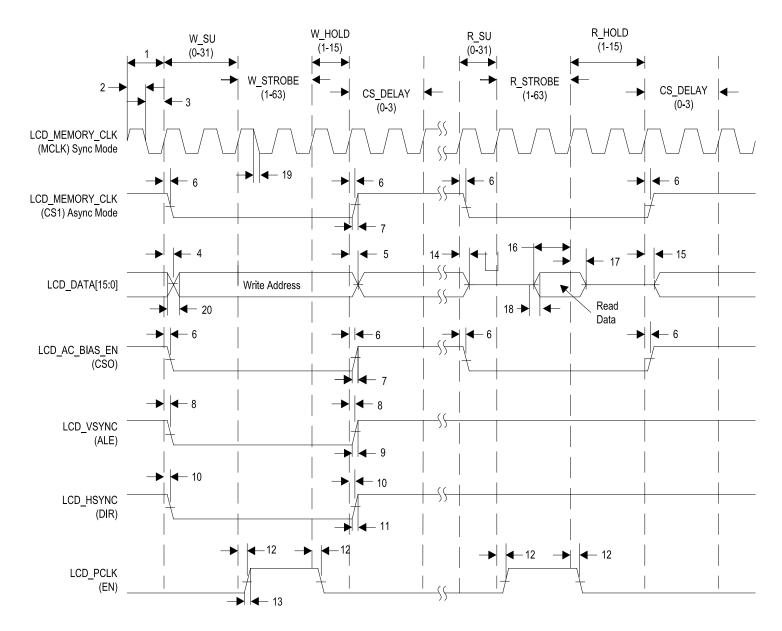
A. Hitachi mode performs asynchronous operations that do not require an external LCD_MEMORY_CLK. The first LCD_MEMORY_CLK waveform is only shown as a reference of the internal clock that sequences the other signals. The second LCD_MEMORY_CLK waveform is shown as E1 since the LCD_MEMORY_CLK signal is used to implement the E1 function in Hitachi mode.

FIGURE 65. Command Read in Hitachi Mode.


DLA LAND AND MARITIME	SIZE	CODE IDENT NO.	DWG NO. V62/15602
COLUMBUS, OHIO	A	16236	
		REV A	PAGE 111

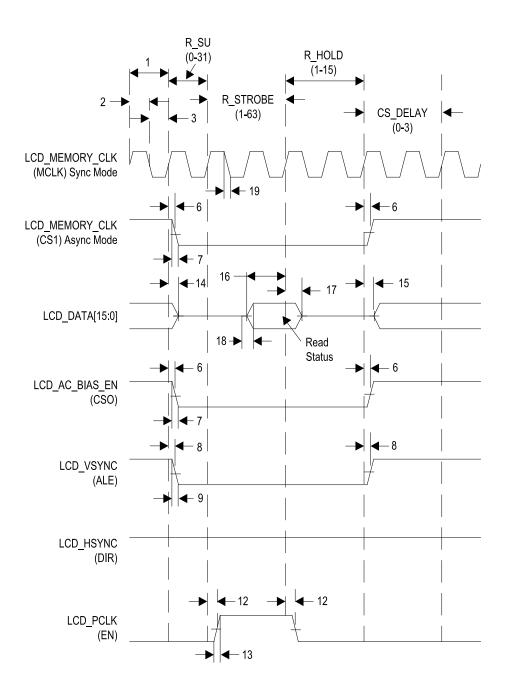
A. Hitachi mode performs asynchronous operations that do not require an external LCD_MEMORY_CLK. The first LCD_MEMORY_CLK waveform is only shown as a reference of the internal clock that sequences the other signals. The second LCD_MEMORY_CLK waveform is shown as E1 since the LCD_MEMORY_CLK signal is used to implement the E1 function in Hitachi mode.

FIGURE 66. Data Read in Hitachi Mode.


DLA LAND AND MARITIME	SIZE	CODE IDENT NO.	DWG NO. V62/15602
COLUMBUS, OHIO	A	16236	
		REV A	PAGE 112

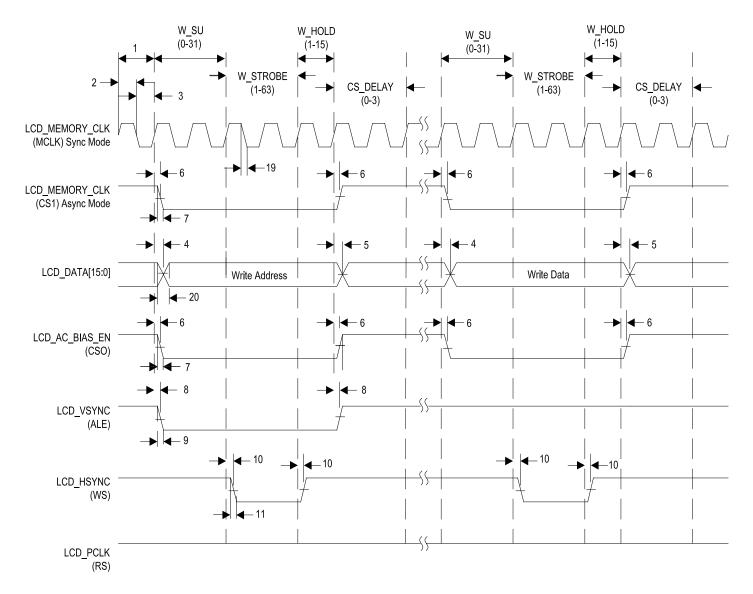
A. Motorola mode can be configured to perform asynchronous operations or synchronous operations. When configured in asynchronous mode, LCD_MEMORY_CLK is not required, so it performs the CS1 function. When configured in synchronous mode, LCD_MEMORY_CLK performs the MCLK function. LCD_MEMORY_CLK is also shown as a reference of the internal clock that sequences the other signals..

FIGURE 67. Micro-Interface Graphic Display Motorola Write.


DLA LAND AND MARITIME	SIZE	CODE IDENT NO.	DWG NO. V62/15602
COLUMBUS, OHIO	A	16236	
		REV A	PAGE 113

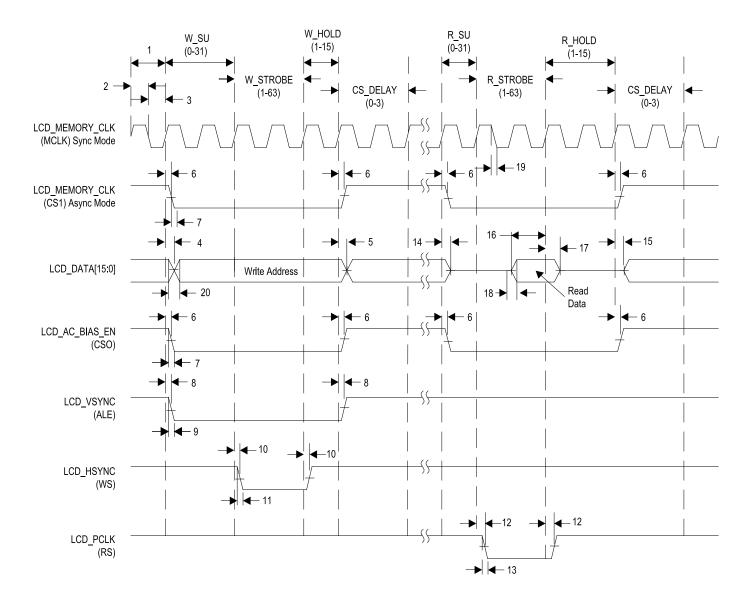
A. Motorola mode can be configured to perform asynchronous operations or synchronous operations. When configured in asynchronous mode, LCD_MEMORY_CLK is not required, so it performs the CS1 function. When configured in synchronous mode, LCD_MEMORY_CLK performs the MCLK function. LCD_MEMORY_CLK is also shown as a reference of the internal clock that sequences the other signals.

FIGURE 68. Micro-Interface Graphic Display Motorola Read.


DLA LAND AND MARITIME	SIZE	CODE IDENT NO.	DWG NO. V62/15602
COLUMBUS, OHIO	A	16236	
		REV A	PAGE 114

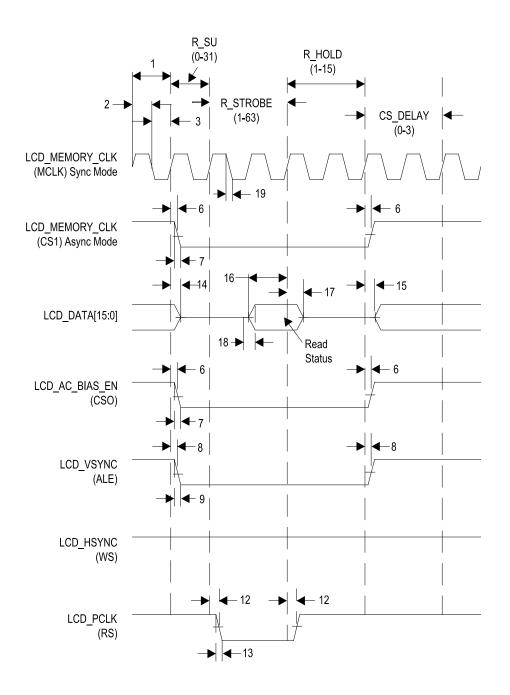
A. Motorola mode can be configured to perform asynchronous operations or synchronous operations. When configured in asynchronous mode, LCD_MEMORY_CLK is not required, so it performs the CS1 function. When configured in synchronous mode, LCD_MEMORY_CLK performs the MCLK function. LCD_MEMORY_CLK is also shown as a reference of the internal clock that sequences the other signals.

FIGURE 69. Micro-Interface Graphic Display Motorola Status.


DLA LAND AND MARITIME	SIZE	CODE IDENT NO.	DWG NO. V62/15602
COLUMBUS, OHIO	A	16236	
		REV A	PAGE 115

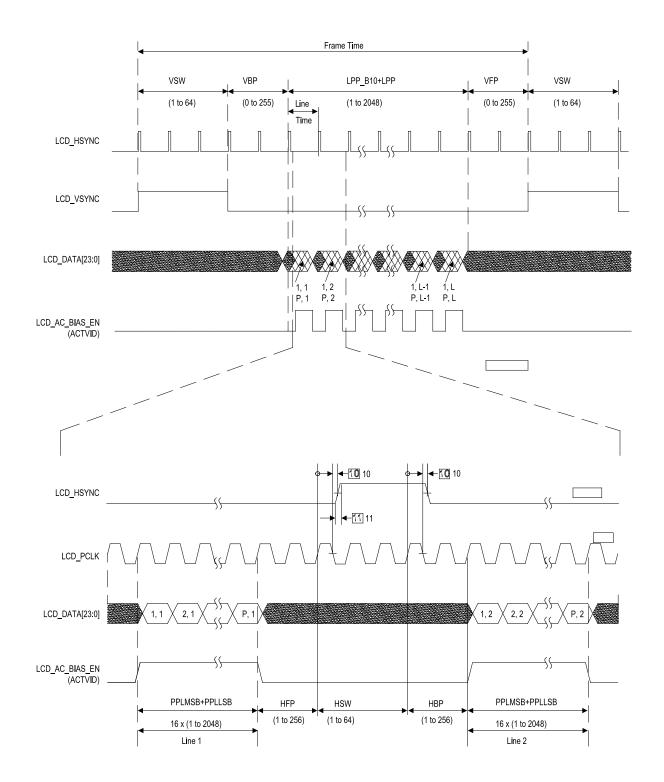
A. Intel mode can be configured to perform asynchronous operations or synchronous operations. When configured in asynchronous mode, LCD_MEMORY_CLK is not required, so it performs the CS1 function. When configured in synchronous mode, LCD_MEMORY_CLK performs the MCLK function. LCD_MEMORY_CLK is also shown as a reference of the internal clock that sequences the other signals.

FIGURE 70. Micro-Interface Graphic Display Intel Write.

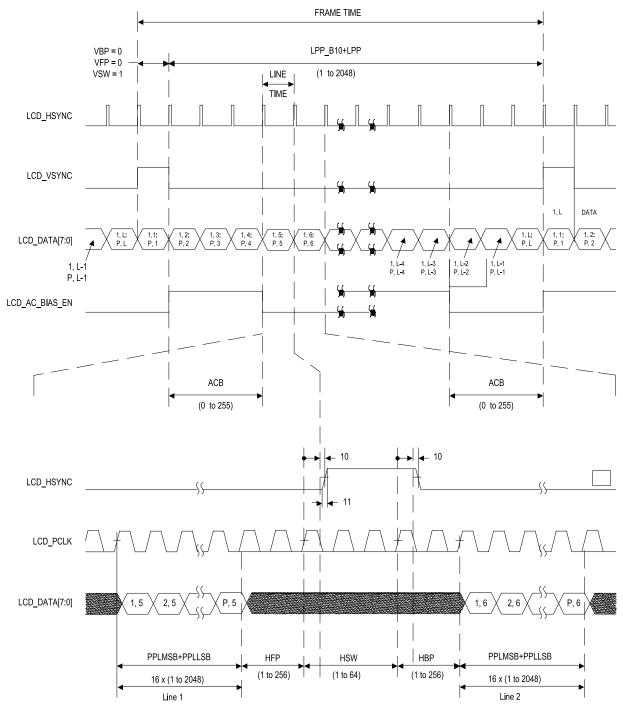

DLA LAND AND MARITIME	SIZE	CODE IDENT NO.	DWG NO. V62/15602
COLUMBUS, OHIO	A	16236	
		REV A	PAGE 116

A. Intel mode can be configured to perform asynchronous operations or synchronous operations. When configured in asynchronous mode, LCD_MEMORY_CLK is not required, so it performs the CS1 function. When configured in synchronous mode, LCD_MEMORY_CLK performs the MCLK function. LCD_MEMORY_CLK is also shown as a reference of the internal clock that sequences the other signals.

FIGURE 71. Micro-Interface Graphic Display Intel Read.


DLA LAND AND MARITIME	SIZE	CODE IDENT NO.	DWG NO. V62/15602
COLUMBUS, OHIO	A	16236	
		REV A	PAGE 117

A. Intel mode can be configured to perform asynchronous operations or synchronous operations. When configured in asynchronous mode, LCD_MEMORY_CLK is not required, so it performs the CS1 function. When configured in synchronous mode, LCD_MEMORY_CLK performs the MCLK function. LCD_MEMORY_CLK is also shown as a reference of the internal clock that sequences the other signals.

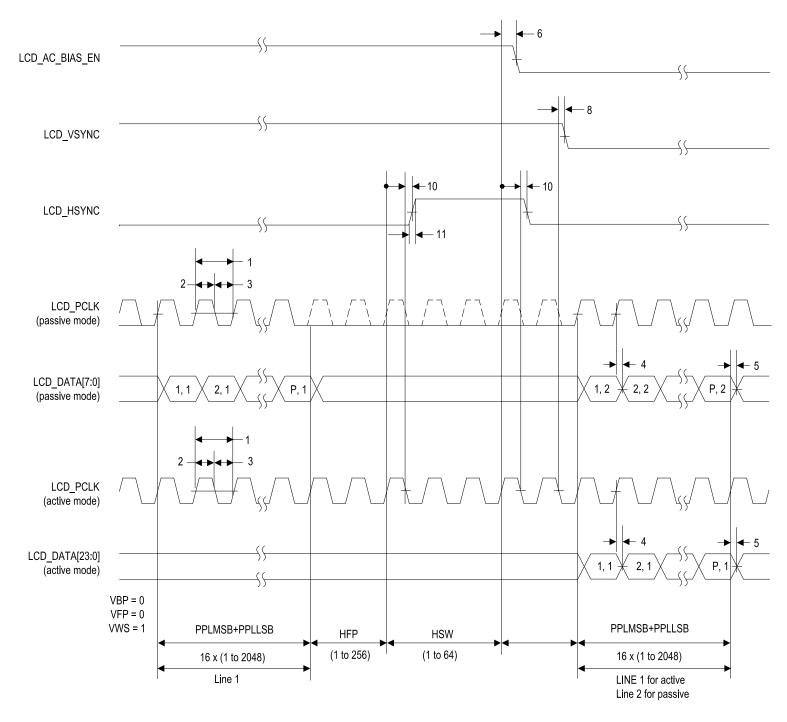

FIGURE 72. Micro-Interface Graphic Display Intel Status.

DLA LAND AND MARITIME	SIZE	CODE IDENT NO.	DWG NO. V62/15602
COLUMBUS, OHIO	A	16236	
		REV A	PAGE 118

DLA LAND AND MARITIME	SIZE	CODE IDENT NO.	DWG NO. V62/15602
COLUMBUS, OHIO	A	16236	
		REV A	PAGE 119

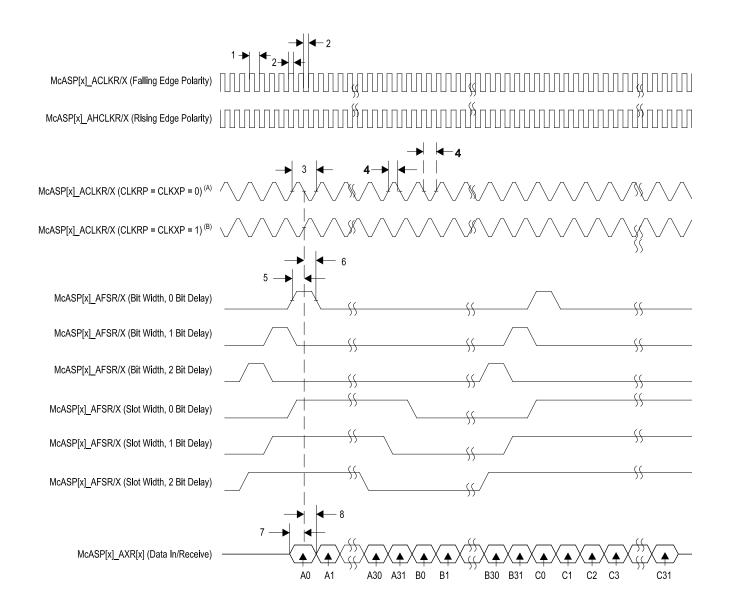
A. The dashed portion of LCD_PCLK is only shown as a reference of the internal clock that sequences the other signals.

FIGURE 74. LCD Raster-Mode Passive.


DLA LAND AND MARITIME	SIZE	CODE IDENT NO.	DWG NO. V62/15602
COLUMBUS, OHIO	A	16236	
		REV A	PAGE 120

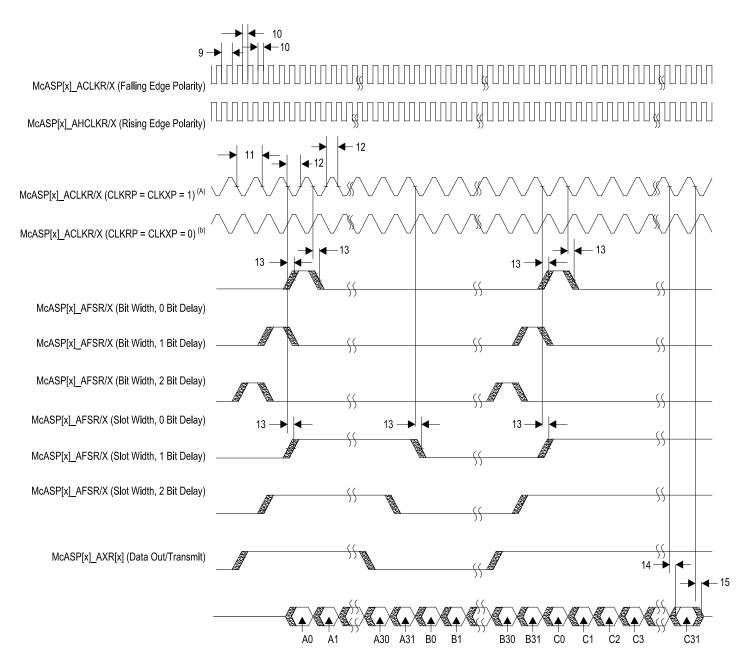
A. The dashed portion of LCD_PCLK is only shown as a reference of the internal clock that sequences the other signals.

FIGURE 75. LCD Raster-Mode Control Signal Activation.


DLA LAND AND MARITIME	SIZE	CODE IDENT NO.	DWG NO. V62/15602
COLUMBUS, OHIO	A	16236	
		REV A	PAGE 121

A. The dashed portion of LCD_PCLK is only shown as a reference of the internal clock that sequences the other signals.

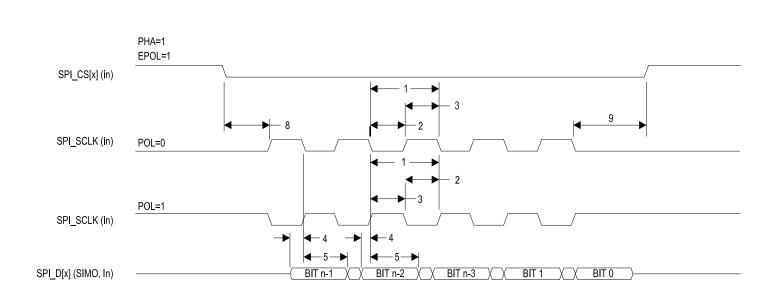
FIGURE 76. LCD Raster-Mode Control Signal Deactivation.

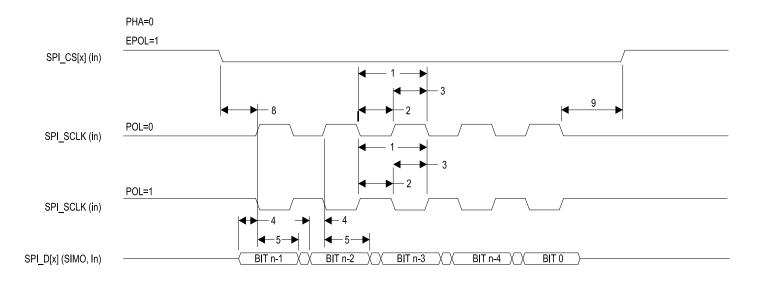

DLA LAND AND MARITIME	SIZE	CODE IDENT NO.	DWG NO. V62/15602
COLUMBUS, OHIO	A	16236	
		REV A	PAGE 122

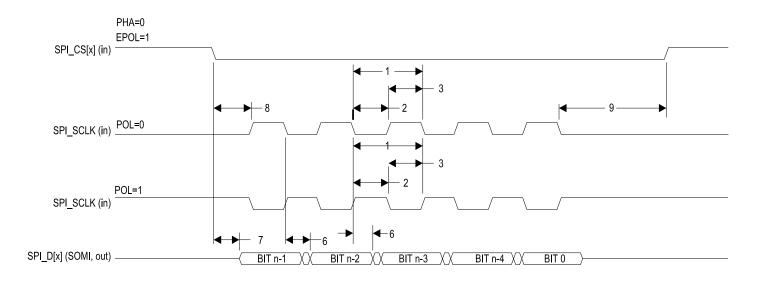
- A. For CLKRP = CLKXP = 0, the McASP transmitter is configured for rising edge (to shift data out) and the McASP receiver is configured for falling edge (to shift data in).
- B. For CLKRP = CLKXP = 1, the McASP transmitter is configured for falling edge (to shift data out) and the McASP receiver is configured for rising edge (to shift data in).

FIGURE 77. McASP Input Timing.

DLA LAND AND MARITIME	SIZE	CODE IDENT NO.	DWG NO. V62/15602
COLUMBUS, OHIO	A	16236	
		REV A	PAGE 123


- A. For CLKRP = CLKXP = 1, the McASP transmitter is configured for falling edge (to shift data out) and the McASP receiver is configured for rising edge (to shift data in).
- B. For CLKRP = CLKXP = 0, the McASP transmitter is configured for rising edge (to shift data out) and the McASP receiver is configured for falling edge (to shift data in).


FIGURE 78. McASP Output Timing


DLA LAND AND MARITIME	SIZE	CODE IDENT NO.	DWG NO. V62/15602
COLUMBUS, OHIO	A	16236	
		REV A	PAGE 124

DLA LAND AND MARITIME	SIZE	CODE IDENT NO.	DWG NO.
COLUMBUS, OHIO	A	16236	V62/15602
		REV A	PAGE 125

FIGURE 79. SPI Slave Mode Receive Timing.

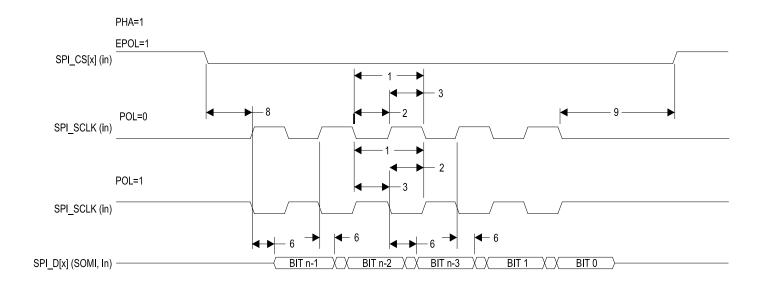
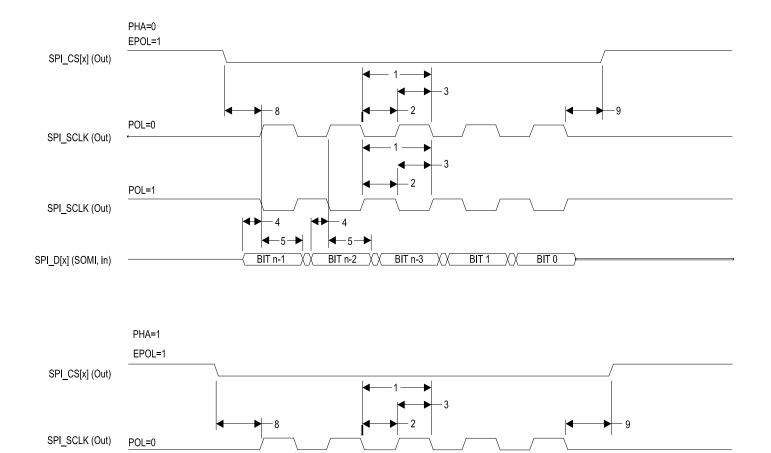
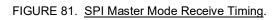




FIGURE 80. SPI Slave Mode Transmit Timing.

DLA LAND AND MARITIME	SIZE	CODE IDENT NO.	DWG NO. V62/15602
COLUMBUS, OHIO	A	16236	
		REV A	PAGE 126

← 4

BIT n-2

∢_5_►

►

← 4

∢_5→

BIT n-1

- 3

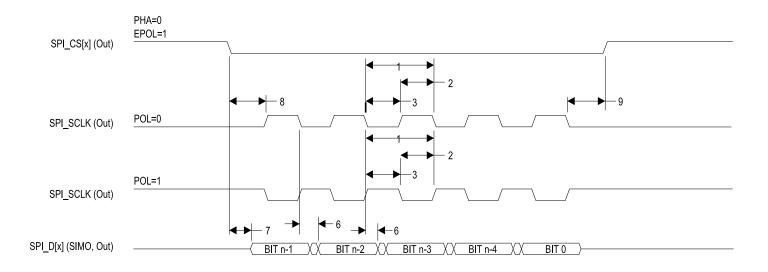
BIT n-3

χх

BIT 1

XX

BIT 0


- 2

POL=1

SPI_SCLK (Out)

 $SPI_D[x] \, (SOMI, \, In)$

DLA LAND AND MARITIME	SIZE	CODE IDENT NO.	DWG NO. V62/15602
COLUMBUS, OHIO	A	16236	
		REV A	PAGE 127

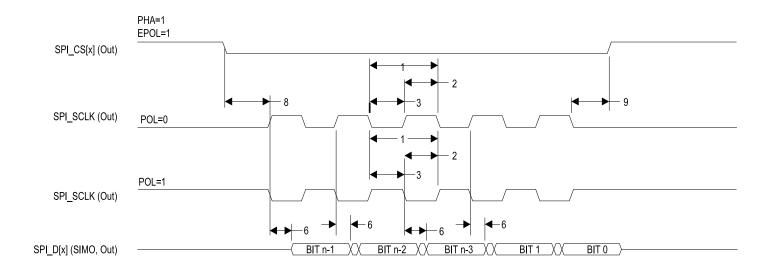


FIGURE 82. SPI Master Mode Transmit Timing.

DLA LAND AND MARITIME	SIZE	CODE IDENT NO.	DWG NO. V62/15602
COLUMBUS, OHIO	A	16236	
		REV A	PAGE 128

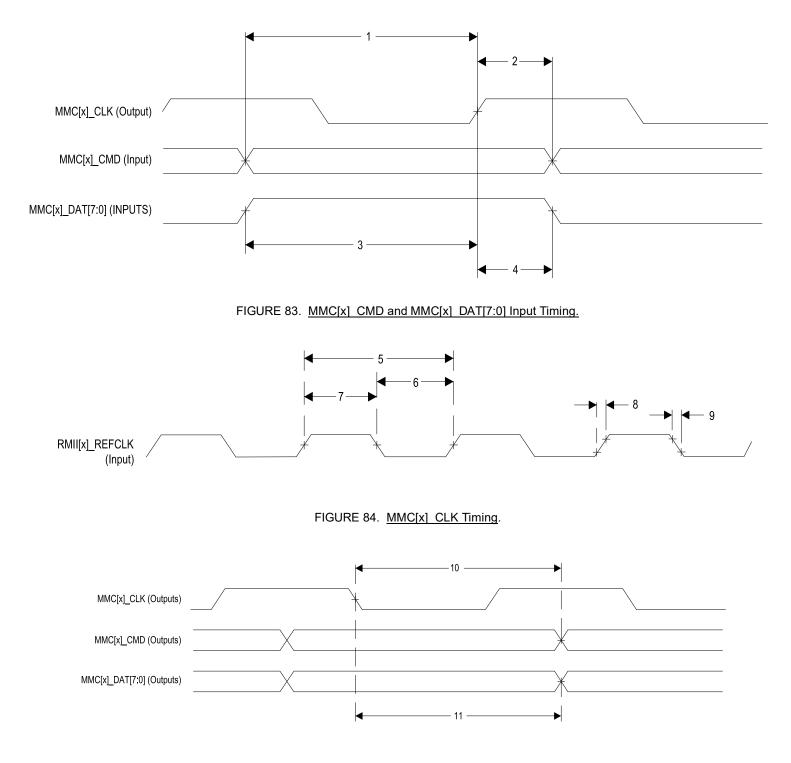
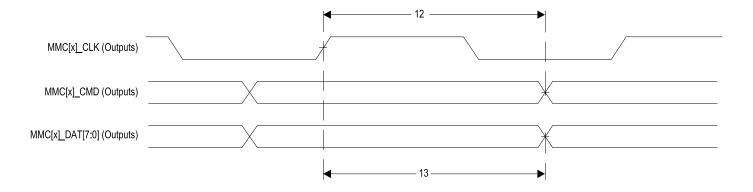
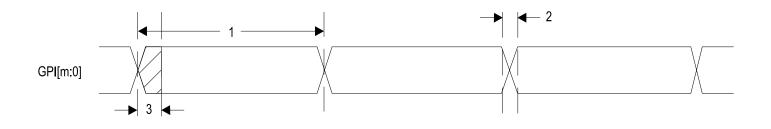




FIGURE 85. MMC[x] CMD and MMC[x] DAT[7:0] Output Timing—Standard Mode.)

DLA LAND AND MARITIME	SIZE	CODE IDENT NO.	DWG NO. V62/15602
COLUMBUS, OHIO	A	16236	
		REV A	PAGE 129

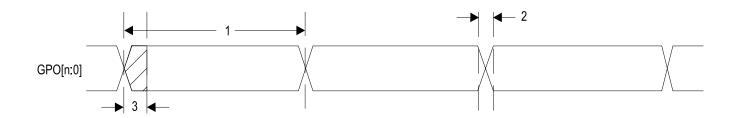


FIGURE 88. PRU-ICSS PRU Direct Output Timing.

DLA LAND AND MARITIME	SIZE	CODE IDENT NO.	DWG NO. V62/15602
COLUMBUS, OHIO	A	16236	
		REV A	PAGE 130

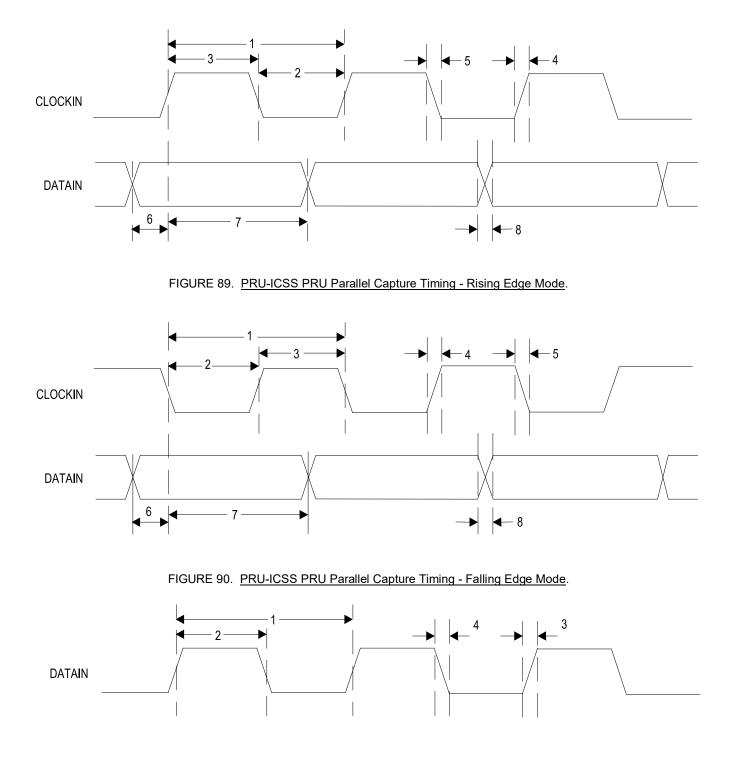


FIGURE 91. PRU-ICSS PRU Shift In Timing.

DLA LAND AND MARITIME	SIZE	CODE IDENT NO.	DWG NO. V62/15602
COLUMBUS, OHIO	A	16236	
		REV A	PAGE 131

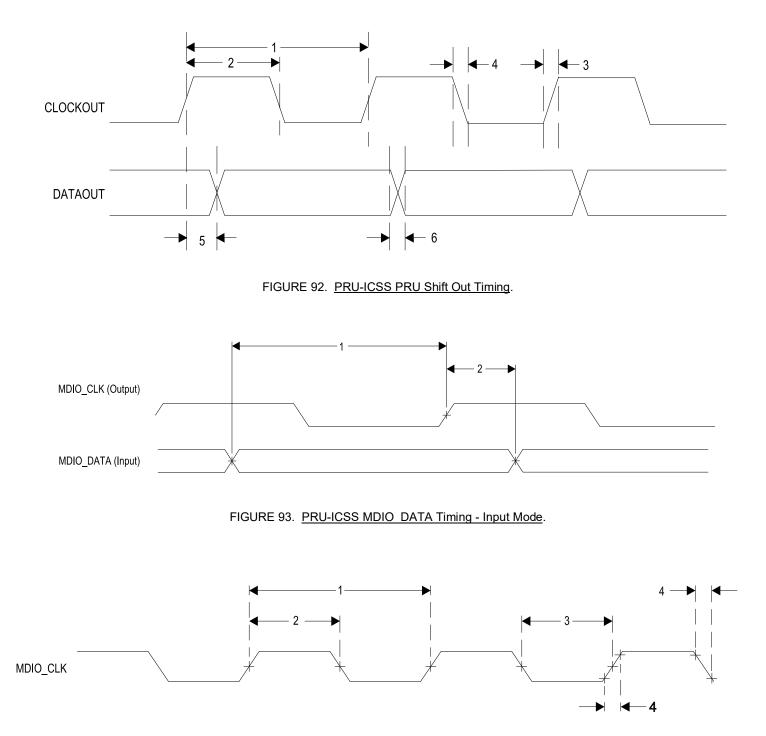


FIGURE 94. PRU-ICSS MDIO CLK Timing.

DLA LAND AND MARITIME	SIZE	CODE IDENT NO.	DWG NO. V62/15602
COLUMBUS, OHIO	A	16236	
		REV A	PAGE 132

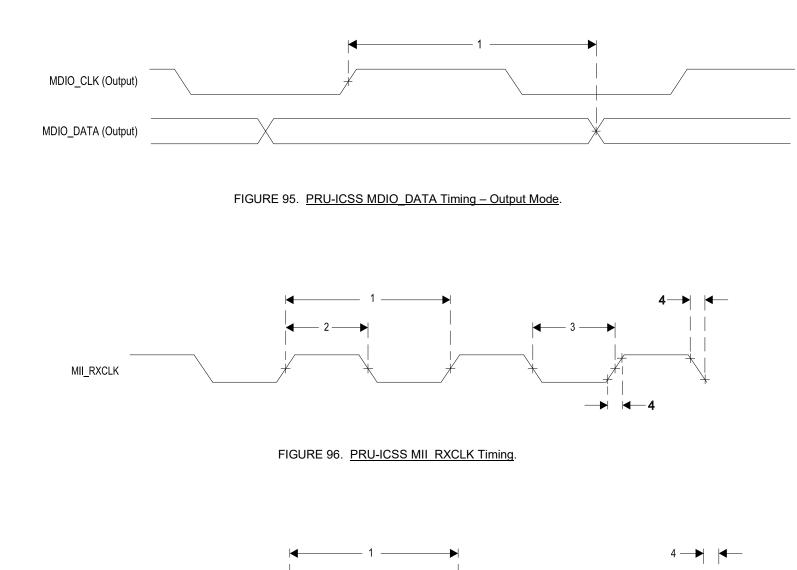
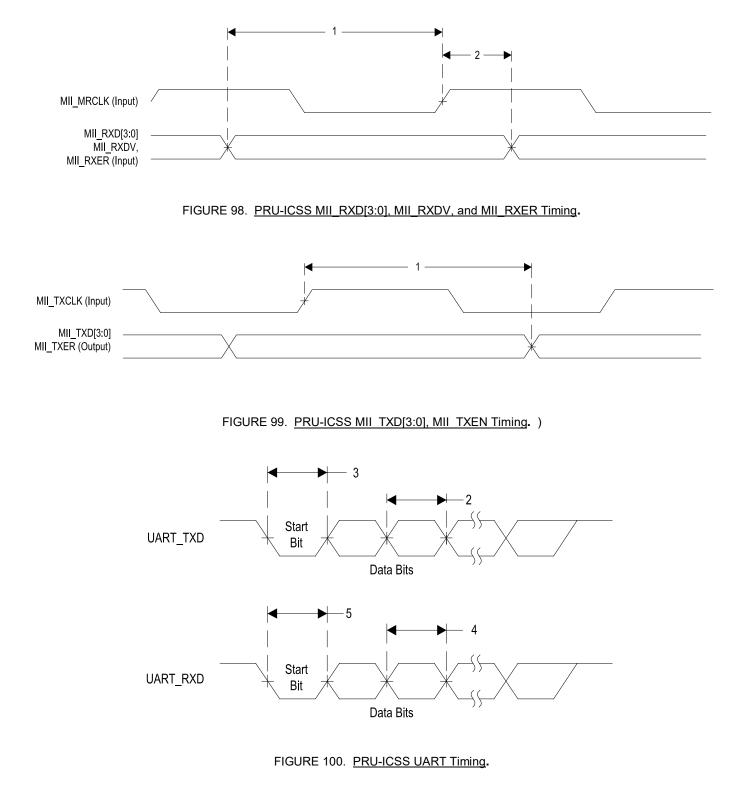



FIGURE 97. PRU-ICSS MII TXCLK Timing.

MII_TXCLK

DLA LAND AND MARITIME	SIZE	CODE IDENT NO.	DWG NO. V62/15602
COLUMBUS, OHIO	A	16236	
		REV A	PAGE 133

DLA LAND AND MARITIME	SIZE	CODE IDENT NO.	DWG NO. V62/15602
COLUMBUS, OHIO	A	16236	
		REV A	PAGE 134

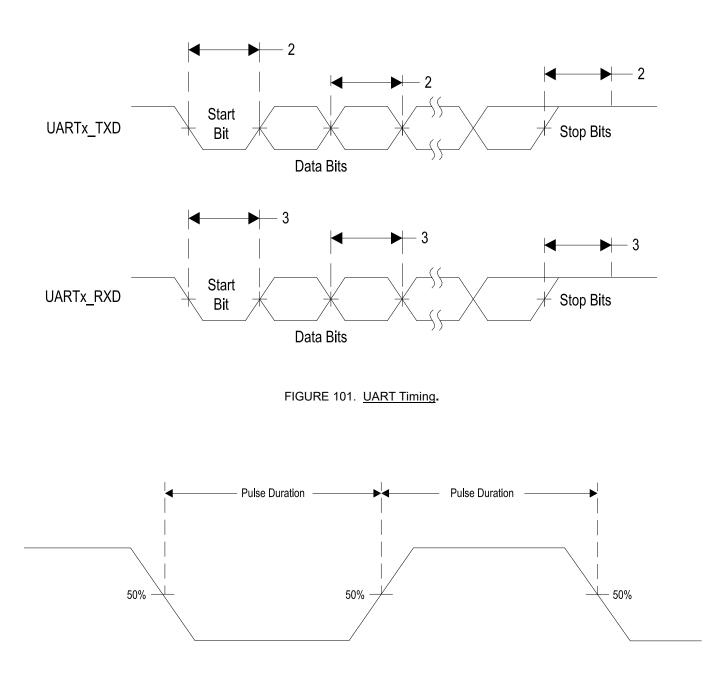


FIGURE 102. UART IrDA Pulse Parameters.

DLA LAND AND MARITIME	SIZE	CODE IDENT NO.	DWG NO. V62/15602
COLUMBUS, OHIO	A	16236	
		REV A	PAGE 135

4. VERIFICATION

4.1 <u>Product assurance requirements</u>. The manufacturer is responsible for performing all inspection and test requirements as indicated in their internal documentation. Such procedures should include proper handling of electrostatic sensitive devices, classification, packaging, and labeling of moisture sensitive devices, as applicable.

5. PREPARATION FOR DELIVERY

5.1 <u>Packaging</u>. Preservation, packaging, labeling, and marking shall be in accordance with the manufacturer's standard commercial practices for electrostatic discharge sensitive devices.

6. NOTES

6.1 ESDS. Devices are electrostatic discharge sensitive and are classified as ESDS class 1 minimum.

6.2 <u>Configuration control</u>. The data contained herein is based on the salient characteristics of the device manufacturer's data book. The device manufacturer reserves the right to make changes without notice. This drawing will be modified as changes are provided.

6.3 <u>Suggested source(s) of supply</u>. Identification of the suggested source(s) of supply herein is not to be construed as a guarantee of present or continued availability as a source of supply for the item. DLA Land and Maritime maintains an online database of all current sources of supply at https://landandmaritimeapps.dla.mil/programs/smcr/

Vendor item drawing administrative control number <u>1</u> /	Device manufacturer CAGE code	Vendor part number	Device Marking
V62/15602-01XF <u>2</u> /	01295	AM3358BGCZA80EP	M3358BGCZA80EP

 The vendor item drawing establishes an administrative control number for identifying the item on the engineering documentation.

2/ Devices listed on this drawing are supplied to lead finish "F". The solder ball material contains compositions of Sn = 63%, Pb = 34.5, Ag = 2% and Sb = 0.5 %.

CAGE code

01295

Source of supply

Texas Instruments, Inc. 12500 TI Blvd. Dallas, TX 75243

DLA LAND AND MARITIME	SIZE	CODE IDENT NO.	DWG NO. V62/15602
COLUMBUS, OHIO	A	16236	
		REV A	PAGE 136