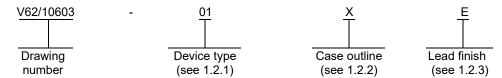
	REVISIONS		
LTR	DESCRIPTION	DATE (YR-MO-DA)	APPROVED
А	Update boilerplate to current MIL-PRF-38535 requirements PHN	17-08-21	Thomas M. Hess
В	Update boilerplate paragraphs to current VID description requirements PHN	23-04-20	Muhammad A. Akbar

CURRENT DESIGN ACTIVITY CAGE CODE 16236 HAS CHANGED NAMES TO: DLA LAND AND MARITIME COLUMBUS, OHIO 43218-3990

Prepared in accordance with ASME Y14.24

Vendor Item Drawing


Revision Statu	Revision Status of Sheets																
REV																	
SHEET																	
REV																	
SHEET																	
REV	В	В	В	В	В	В	В	В	В	В	В	В					
SHEET	1	2	3	4	5	6	7	8	9	10	11	12					

OHEET	1 '	_	0	1 -	0	0	<i>'</i>	0		10		12											
PMIC N/A				PREPARED BY Phu H. Nguyen						DLA LAND AND MARITIME COLUMBUS, OHIO 43218-3990 http://www.landandmaritime.dla.mil /													
Original date	e of dr	awin	g	CHECKED BY						TITLE													
					ı	Phu H	l. Ngu	ıyen			MIC	ROC	IRC	UIT,	DIG	IT/	AL (CMC	os	3.0	V TO	5.5 \	/ ,
YY M	M DD			APPROVED BY				12 BIT, 200 KSPS, 4-/8 CHANNEL, LOW POWER															
09-1	1-09				Thomas M. Hess				SERIAL ANALOG TO DIGITAL CONVERTER WI AUTOPOWER DOWN, MONOLITHIC SILICON						IH								
				SIZ	Έ	CA	GE C	ODE	:		DW	3 NO											
				Α	١		1	623	6						VE	32	/10	060	03	}			
				F	REV	В					PAC	ЭE	1	OF	- 12	2							

AMSC N/A 5962-V090-23

1. SCOPE

- 1.1 Scope. This drawing documents the general requirements of a high performance 3.0 V to 5.5 V, 12 bit, 200 KSPS, 4-/8 channel, low power serial analog to digital converter with auto power down microcircuit, with an operating temperature range of -55°C to +125°C.
- 1.2 Vendor Item Drawing Administrative Control Number. The manufacturer's PIN is the item of identification. The vendor item drawing establishes an administrative control number for identifying the item on the engineering documentation:

1.2.1 Device type(s).

Device type Generic Circuit function 01 TLV2548-EP 3.0 V to 5.5 V, 12 bit, 200 KSPS, 4-/8 channel, low power serial analog to digital converter with auto power down

1.2.2 Case outline(s). The case outlines are as specified herein.

Outline letter	Number of pins	JEDEC PUB 95	Package style
Х	20	JEDEC MO-153	Plastic Small outline

1.2.3 <u>Lead finishes</u>. The lead finishes are as specified below or other lead finishes as provided by the device manufacturer:

Finish designator	<u>Material</u>
Α	Hot solder dip
В	Tin-lead plate
С	Gold plate
D	Palladium
E	Gold flash palladium
F	Tin-lead alloy
Z	Other

DLA LAND AND MARITIME	SIZE A		GE CODE 16236	DWG NO. V62/10603		
COLUMBUS, OHIO		REV	В	PAGE 2		

1.3 Absolute maximum ratings. 1/

Supply voltage range (GND to V _{CC})	0.3 V to 6.5 V
Analog input voltage range,	
Reference input voltage	
Digital input voltage range	
Operating virtual junction temperature range, T _J	
Operating free air temperature range, T _A	55°C to 125°C
Storage temperature range (T _{STG})	65°C to 150°C
Lead temperature 1.6 mm (1/16 inch) from case for 10 seconds	260°C
Dissipation ratings:	

Package	T _A < 25°C	Derating factor	T _A = 125°C
	Power rating	Above $T_A = 25^{\circ}C \ 2/$	power rating
Case outline X	977 mW	7.8 mW/°C	195 mW

1.4 Recommended operating conditions. 3/

Paramete	er	Symbol	Min	Max	Unit
Supply voltage		Vcc	3.0	5.5	V
Analog input voltage 4/			0	Vcc	V
High level control input voltage	V _{IH}	2.1		V	
Low level control input voltage	V _{IL}		0.6	V	
Delay time, delay from $\overline{\text{CS}}$ fallin edge (See figure 4)	t _{d(CSL-FSH)}	0.5		SCLKs	
Delay time, delay from 16 th SC rising edge (FS = 1), or 17 th risi (See figure 4 and 7)	t _d (SCLK-CSH)	0.5		SCLKs	
Setup time, FS rising edge before (See figure 4)	ore SCLK falling edge	t _{su(FSH-SCLKL)}	20		ns
Hold time, FS hold high after S (See figure 4)	CLK falling edge	t _{h(FSH-SCLKL)}	30		ns
Pulse width, $\overline{\text{CS}}$ high time (See	figure 4 and 7)	t _{wH(CS)}	100		ns
Pulse width, FS high time (See	t _{wH(FS)}	0.75		SCLKs	
SCLK cycle time	V_{CC} = 3.0 V to 3.6 V	$t_{c(SCLK)}$	67	10000	ns
(See figure 4 and 7)	V _{CC} = 4.5 V to 5.5 V		50	10000	ns

- Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
- This is the inverse of the traditional junction to ambient thermal resistance (R_{θJA}). Thermal resistance is not production tested and the value given are for informational purposes only.
- 3/ Use of this product beyond the manufacturers design rules or stated parameters is done at the user's risk. The manufacturer and/or distributor maintain no responsibility or liability for product used beyond the stated limits.
- When binary output format is used, analog input voltages greater than that applied to REFP convert as all ones (111111111111), while input voltages less than that applied to REFM convert as all zeros (00000000000). The device is functional with reference down to 1 V. (VREFP VREFM 1); however, the electrical specifications are no longer applicable.

DLA LAND AND MARITIME	SIZE A		GE CODE 16236	DWG NO. V62/10603		
COLUMBUS, OHIO		REV	В	PAGE 3		

Para	meter		Symbol	Min	Max	Unit
Pulse width, SCLK low time	V _{CC} = 4.5 V		t _{wL(SCLK)}	22		ns
(See figure 4 and 7)	V _{CC} = 3.0 V			27		
Pulse width, SCLK high time	V _{CC} = 4.5 V		t _{wH(SCLK)}	22		
(See figure 4 and 7)	V _{CC} = 3.0 V			27		
Setup time, SDI valid before factive) or the rising edge of S			t _{su(DI-SCLK)}	25		
Hold time, SDI hold valid after active) or the rising edge of S			$t_{\text{h(DI-SCLK)}}$	5		
Delay time, delay from \overline{CS} falli (See figure 4 and 7)	ng edge to SD	O valid	$t_{\text{d(CSL-DOV)}}$		25	
Delay time, delay from FS fall (See figure 4)	ing edge to SD	t _{d(FSL-DOV)}		25		
Delay time, delay from SCLK falling edge (FS is active) or SCLK rising edge	V _{CC} = 5.5 V	SDO = 0 pF		0.5 SCLK	+ 5 TYP	
(FS = 1) to SDO valid (See figure 4 and 7)		SDO = 60 pF	t _{d(SCLK-DOV)}		0.5 SCLK + 24	
For a date code later than xxx, see the data code from	V_{CC} = 3.0 V	SDO = 0 pF		0.5 SCLK	+ 12 TYP	
manufacturer data.		SDO = 60 pF			0.5 SCLK + 33	
Delay time, delay from 17 th S0 active), or the 16 th falling edge edge (See figure 4 and 7)			t _d (SCLK-EOCL)	45		
Delay time, delay from 16 th S0 edge (FS = 1), or from the 17 rising edge. (See figure 4, 5, 6	th rising edge S		t _d (SCLK-INTL)	Min t _(conv)		
Delay time, delay from $\overline{\text{CS}}$ falli $\overline{\text{INT}}$ rising edge (See figure 4,	ng edge or FS	rising edge to	$t_{d(CLK\text{-INTH})}$ or $t_{d(FSH\text{-INTH})}$		50	
Delay time, delay from $\overline{\text{CS}}$ risinedge (See figure 5 and 6)			t _{d(CSH-} CSTARTL)	100		
Delay time, delay from CSTAR edge (See figure 5 and 6)	T rising edge to	o EOC falling	t _{d(CSTARTH-} EOCL)		50	ns
Pulse width, CSTART low time	(See figure 5	and 6)	t _{wL(CSTART)}	Min t _(sample)		μs
Delay time, delay from CSTAR falling edge (See figure 6)	T rising edge to	o CSTART	t _{d(CSTARTH-} CSTARTL)	Min t _(conv)		μs
Delay time, delay from CSTART rising edge to INT falling edge (See figure 6 and 7)			t _{d(CSTARTH-} INTL)	Max	t _(conv) TYP	μs
Operation free air temperature	•		TA	-55	125	°C

DLA LAND AND MARITIME	SIZE A		SE CODE 16236	DWG NO. V62/10603	
COLUMBUS, OHIO		REV	В	PAGE 4	

2. APPLICABLE DOCUMENTS

JEDEC - SOLID STATE TECHNOLOGY ASSOCIATION (JEDEC)

JEDEC PUB 95 - Registered and Standard Outlines for Semiconductor Devices

(Copies of these documents are available online at http://www.jedec.org)

3. REQUIREMENTS

- 3.1 <u>Marking</u>. Parts shall be permanently and legibly marked with the manufacturer's part number as shown in 6.3 herein and as follows:
 - A. Manufacturer's name, CAGE code, or logo
 - B. Pin 1 identifier
 - C. ESDS identification (optional)
- 3.2 <u>Unit container</u>. The unit container shall be marked with the manufacturer's part number and with items A and C (if applicable) above.
- 3.3 <u>Electrical characteristics</u>. The maximum and recommended operating conditions and electrical performance characteristics are as specified in 1.3, 1.4, and table I herein.
 - 3.4 Design, construction, and physical dimension. The design, construction, and physical dimensions are as specified herein.
 - 3.5 Diagrams.
 - 3.5.1 Case outline. The case outline shall be as shown in 1.2.2 and figure 1.
 - 3.5.2 <u>Terminal connections</u>. The terminal connections shall be as shown in figure 2.
 - 3.5.3 Functional block diagram. The functional block diagram shall be as shown in figure 3.
 - 3.5.4 <u>Timing waveforms</u>. The timing waveforms shall be as shown in figure 4 7.

DLA LAND AND MARITIME	SIZE A		GE CODE 16236	DWG NO. V62/10603
COLUMBUS, OHIO		REV	В	PAGE 5

TABLE I. Electrical performance characteristics. $\underline{1}/$

Test	Symbol	Conditions			Lim	nits	Unit
		<u>2</u> /			Min	Max	
High level output voltage	Vон	$V_{CC} = 5.5 \text{ V}, I_{OH} = -6$	0.2 m/	A at 30 pF load	2.4		V
		V _{CC} = 3.0 V, I _{OH} = -20 µA at 30 pF load		Vcc - 0.2			
Low level output voltage	Vol	V _{CC} = 5.5 V, I _{OL} = 0.8 mA at 30 pF load V _{CC} = 3.0 V, I _{OL} = 20 μA at 30 pF load			0.4		
					0.1		
Off state output current	loz	$V_O = V_{CC}$	CS	= V _{CC}		2.5	μA
(high-impedance state)		V _O = 0	CS	= V _{CC}	-2.5		
High level input current	lih	$V_I = V_{CC}$				2.5	
Low level input current	lıL	V _I = 0 V				2.5	
		CS at 0 V, Ext ref	Vc	_C = 4.5 V to 5.5 V		2	mA
Operating supply current, normal			Vc	c = 3.0 V to 3.3 V		1	
short sampling	Icc	CS at 0 V, Int ref		c = 4.5 V to 5.5 V		2.4	
		·	Vc	c = 3.0 V to 3.3 V		1.7	
		CS at 0 V, Ext ref		c = 4.5 V to 5.5 V	1.1	TYP	
Operating supply current, extended				c = 3.0 V to 3.3 V	1	TYP	
sampling		CS at 0 V, Int ref	_	c = 4.5 V to 5.5 V	2.1	TYP	
		,		_C = 3.0 V to 3.3 V	1.6	TYP	
Power down supply current for all digital input,	I _{CC(PD)}	V _{CC} = 4.5 V to 5.5 V, Ext clock		1	TYP	μA	
$0 \le V_1 \le 0.3 \text{ V or}$ $V_1 \ge V_{CC} - 0.3 \text{ V, SCLK} = 0$		V _{CC} = 3.0 V to 3.3 V, Ext clock			1	TYP	
Auto power down current for all digital input,	Icc(autopwdn)	V _{CC} = 4.5 V to 5.5 V, Ext clock, Ext ref		1.0 <u>3</u> /	TYP		
$0 \le V_1 \le 0.3 \text{ V or}$ $V_1 \ge V_{CC} - 0.3 \text{ V, SCLK} = 0$, ,	V _{CC} = 3.0 V to 3.3 V, Ext clock, Ext ref		1.0	TYP		
Selected channel leakage current		Selected channel a	t V _{CC}		_	2.5	
•		Selected channel a	t 0 V			2.5	
Maximum static analog reference current into REFP (use external reference)		VREFP = V _{CC} = 5.5 V, VREFM = GND		1	TYP		
Input capacitance	Ci	Analog inputs				50	рF
		Control inputs				25	
Input MUX ON resistance	Zi	V _{CC} = 4.5 V				500	Ω
		V _{CC} = 2.7 V			600		
AC specifications							
Signal to noise ratio + distortion	SINAD	f _I = 12 kHz at 200 KS	SPS		65		dB
Total harmonic distortion	THD	f _I = 12 kHz at 200 KSPS			-73		
				All other temperature		-75	
Effective number of bits	ENOB	f _i = 12 kHz at 200 KSPS		11.6	TYP	Bits	
Spurious free dynamic range	SFDR	f _I = 12 kHz at 200 KS	SPS			-75	dB
Analog input							
Full power bandwidth, -3 dB					1 TY	Р	MHz
Full power bandwidth, -1 dB					500 T	<u> YP</u>	kHz

See footnotes at end of table.

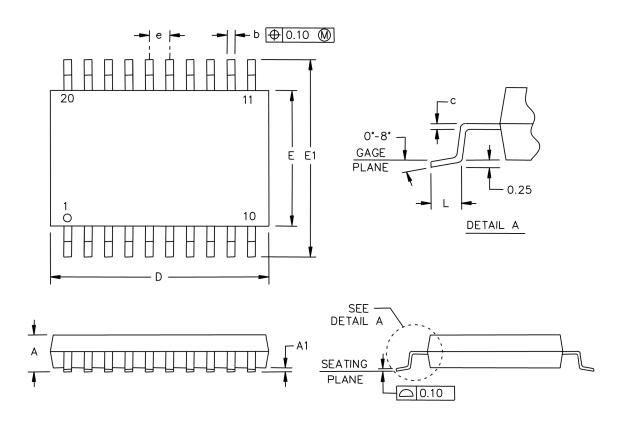

DLA LAND AND MARITIME	SIZE A		E CODE 6236	DWG NO. V62/10603
COLUMBUS, OHIO		REV	В	PAGE 6

TABLE I. Electrical performance characteristics - Continued. 1/

Tes	st	Symbol		Conditions	Limi	ts	Unit
				<u>2</u> /	Min	Max	
Reference specifica	ations <u>5</u> / (0.1 µF	and 10 μF betwee	n REFP and RE	FM pins)			
Positive reference i		REFP	V _{CC} = 3.0 V to		2	Vcc	V
Negative reference	input voltage	REFM	V_{CC} = 3.0 V to	3.3 V	0	2	
			V _{CC} = 5.5 V	$\overline{\text{CS}}$ = 1, SCLK = 0, (off)	100		МΩ
Reference input imp	pedance			$\overline{\text{CS}}$ = 0, SCLK = 20 MHz, (on)	20		kΩ
			V _{CC} = 3 V	$\overline{\text{CS}}$ = 1, SCLK = 0, (off)	100		МΩ
				\overline{CS} = 0, SCLK = 15 MHz, (on)	20		kΩ
Reference input vol	Itage difference	REFP - REFM	V _{CC} = 3.0 V to	5.5 V	2	V _{CC}	V
			V _{CC} = 5.5 V	VREF SELECT = 4 V	3.85	4.15	V
Internal reference v	oltage	REFP - REFM	V _{CC} = 5.5 V	VREF SELECT = 2 V	1.925	2.075	
			V _{CC} = 3.0 V	VREF SELECT = 2 V	1.925	2.075	
Internal reference s	start up time		V_{CC} = 5.5 V, 3 V with 10 µF compensation cap		20	TYP	ms
Internal reference to coefficient	emperature				2.075	40 5/	PPM/ °C
Operating characte	eristics						
Integral linearity err	or (INL) <u>6</u> /	EL				±1.2	LSB
Differential linearity	error (DNL)	ED	<u>7</u> /			±1.2	
Offset error 8/		EO	<u>7</u> /	T _A = 25°C and 125°C	-4	6	
				T _A = -55°C	-4	6.2	
Full scale error 8/		EFS	<u>7</u> /	T _A = 25°C and 125°C	-4	6	
				T _A = -55°C	-4	7.6	
			SDI = B000h		800 h	(2048D)	
Self test output cod	le <u>9</u> /		SDI = C000h		000h	(0D)	
			SDI = D000h		FFFh	(4095D)	
Conversion time	Internal OSC	t _(conv)				4.65	μs
	External SCLK				(14 x DIV)	/ fsclk	
Sampling time		t _(sample)	With a maximu of 1 kW input source impeda		600		ns

- 1/ Testing and other quality control techniques are used to the extent deemed necessary to assure product performance over the specified temperature range. Product may not necessarily be tested across the full temperature range and all parameters may not necessarily be tested. In the absence of specific parametric testing, product performance is assured by characterization and/or design.
- Over operating free air temperature range, $V_{CC} = V_{REFP} = 3 \text{ V}$ to 5.5 V, $V_{REFM} = 0 \text{ V}$, SCLK frequency = 20 MHz at 5 V, 15 MHz at 3 V (unless otherwise noted). All typical values are at $V_{CC} = 5 \text{ V}$, $T_A = 25^{\circ}\text{C}$
- 3/ 1.2 mA if internal reference is used, 165 μ A if internal clock is used.
- 4/ 0.8 mA if internal reference is used, 116 µA if internal clock is used.
- 5/ Specified by design.
- 6/ Linear error is the maximum deviation from the best straight line through the A/D transfer characteristics.
- Analog input voltages greater than that applied to REFP convert as all ones (111111111111), while input voltages less than that applied to REFM convert as all zeros (000000000000).
- 8/ Zero error is the difference between 000000000000 and the converted output for zero input voltage: full scale error is the difference between 11111111111 and the converted output for full scale input voltage.
- 9/ Both the input data and the output codes are expressed in positive logic.

DLA LAND AND MARITIME	SIZE A	_	SE CODE 16236	DWG NO. V62/10603
COLUMBUS, OHIO		REV	В	PAGE 7

Dimensions

Symbol	Millim	eters	Symbol	Millim	eters
•	Min	Max	•	Min	Max
Α		1.20	Е	4.30	4.50
A1	0.05	0.15	E1	6.20	6.60
b	0.19	0.30	е	0.65	BSC
С	0.15	NOM	L	0.50	0.75
D	6.40	6.60			•

NOTES:

- 1. All linear dimensions are in millimeters..
- This drawing is subject to change without notice.

 Body dimensions do not include mold flash or protrusion not to exceed 0.15.
- Falls within JEDEC MO-153.

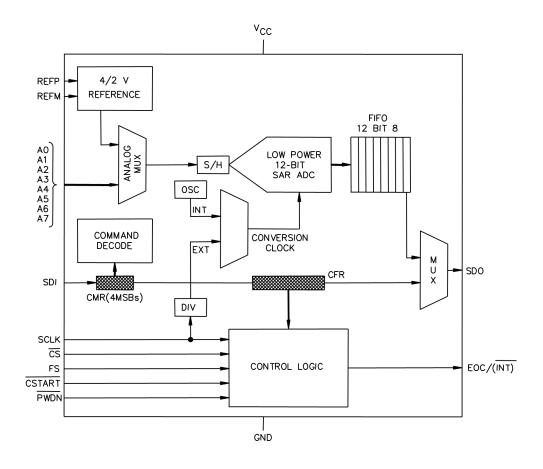
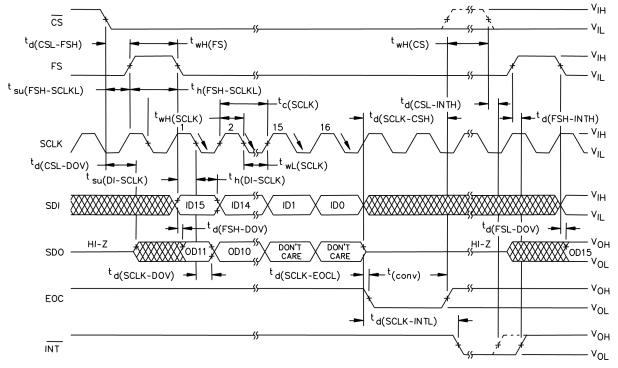
FIGURE 1. Case outline.

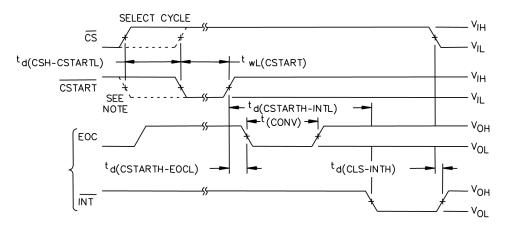
DLA LAND AND MARITIME	SIZE A		GE CODE 16236	DWG NO. V62/10603
COLUMBUS, OHIO		REV	В	PAGE 8

Case outlines X

Terminal number	Terminal symbol	Terminal number	Terminal symbol
1	SDO	11	A5
2	SDI	12	A6
3	SCLK	13	A7
4	EOC(INT)	14	CSTART
5	Vcc	15	GND
6	A0	16	<u>PWDN</u>
7	A1	17	FS
8	A2	18	REFM
9	A3	19	REFP
10	A4	20	CS

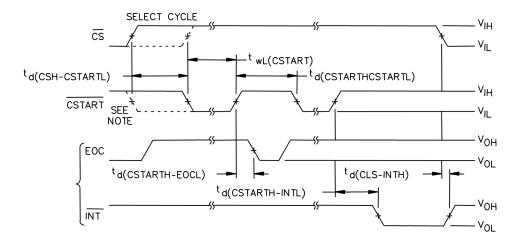
FIGURE 2. Terminal connections.


FIGURE 3. Functional block diagram.

DLA LAND AND MARITIME	SIZE A		GE CODE 16236	DWG NO. V62/10603
COLUMBUS, OHIO		REV	В	PAGE 9

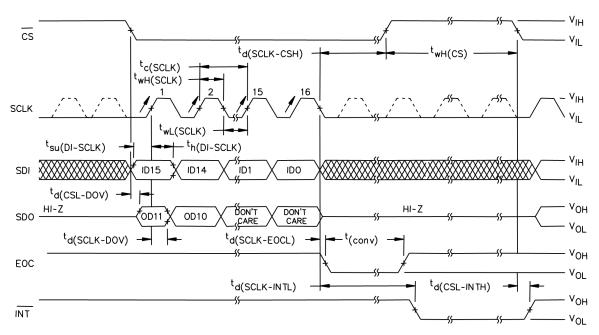
CRITICAL TIMING, DSP MODE(NORMAL SAMPLING, FS IS ACTIVE)


FIGURE 4. Timing waveforms.

CRITICAL TIMING (EXTENDED SAMPLING, SINGLE SHOT)

FIGURE 5. Timing waveforms.

DLA LAND AND MARITIME	SIZE A	_	SE CODE 16236	DWG NO. V62/10603
COLUMBUS, OHIO		REV	В	PAGE 10



CRITICAL TIMING (EXTENDED SAMPLING, REPEAT/SWEEP/REPEAT SWEEP)

NOTES:

1. CSTART falling edge may come before the riding edge of \overline{CS} but no sooner than the fifth SCLK of the SELECT CYCLE. In this case, the actual sampling time is measured from the rising edge \overline{CS} to the rising edge of \overline{CSTART} .

FIGURE 6. Timing waveforms.

CRITICAL TIMING, MICROPROCESSOR MODE(NORMAL SAMPLING, FS=1)

FIGURE 7. Timing waveforms.

DLA LAND AND MARITIME	SIZE A		GE CODE 16236	DWG NO. V62/10603
COLUMBUS, OHIO		REV	В	PAGE 11

4. VERIFICATION

4.1 <u>Product assurance requirements</u>. The manufacturer is responsible for performing all inspection and test requirements as indicated in their internal documentation. Such procedures should include proper handling of electrostatic sensitive devices, classification, packaging, and labeling of moisture sensitive devices, as applicable.

5. PREPARATION FOR DELIVERY

5.1 <u>Packaging</u>. Preservation, packaging, labeling, and marking shall be in accordance with the manufacturer's standard commercial practices for electrostatic discharge sensitive devices.

6. NOTES

- 6.1 ESDS. Devices are electrostatic discharge sensitive and are classified as ESDS class 1 minimum.
- 6.2 <u>Configuration control</u>. The data contained herein is based on the salient characteristics of the device manufacturer's data book. The device manufacturer reserves the right to make changes without notice. This drawing will be modified as changes are provided.
- 6.3 <u>Suggested source(s) of supply</u>. Identification of the suggested source(s) of supply herein is not to be construed as a guarantee of present or continued availability as a source of supply for the item. DLA Land and Maritime maintains an online database of all current sources of supply at https://landandmaritimeapps.dla.mil/programs/smcr/default.aspx

Vendor item drawing administrative control number 1/	Device manufacturer CAGE code	Vendor part number
V62/10603-01XE	01295	TLV2548MPWREP

1/ The vendor item drawing establishes an administrative control number for identifying the item on the engineering documentation.

CAGE code Source of supply

01295 Texas Instruments, Inc.
Semiconductor Group
8505 Forest Lane

P.O. Box 660199 Dallas, TX 75243

DLA LAND AND MARITIME COLUMBUS, OHIO	SIZE A	CAGE CODE 16236		DWG NO. V62/10603
		REV	В	PAGE 12